Parallel execution of SVM using Symmetrical Multi-Processor (LIBSVM-OMP)

N. S. Md Salleh, Amirul Shafiq Bin Mohamad Shariff, Muhammad Ikhwan Afiq Bin Kamsani, S. Nazeri
{"title":"Parallel execution of SVM using Symmetrical Multi-Processor (LIBSVM-OMP)","authors":"N. S. Md Salleh, Amirul Shafiq Bin Mohamad Shariff, Muhammad Ikhwan Afiq Bin Kamsani, S. Nazeri","doi":"10.1109/ICIMU.2014.7066610","DOIUrl":null,"url":null,"abstract":"Parallel computing is a simultaneous use of multiple compute resources such as processors to solve difficult computational problems. It has been used in high-end computing areas such as pattern recognition, defense, web search engine, and medical diagnosis. This paper focuses on the implementation of pattern classification technique, Support Vector Machine (SVM) using Symmetric Multi-Processor (SMP) approach. We have carried out a performance analysis to benchmark the sequential SVM program against the SMP approach. The result shows that the parallelization of SVM training achieves a better performance than the sequential code speed-ups by 15.9s.","PeriodicalId":408534,"journal":{"name":"Proceedings of the 6th International Conference on Information Technology and Multimedia","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Information Technology and Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMU.2014.7066610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Parallel computing is a simultaneous use of multiple compute resources such as processors to solve difficult computational problems. It has been used in high-end computing areas such as pattern recognition, defense, web search engine, and medical diagnosis. This paper focuses on the implementation of pattern classification technique, Support Vector Machine (SVM) using Symmetric Multi-Processor (SMP) approach. We have carried out a performance analysis to benchmark the sequential SVM program against the SMP approach. The result shows that the parallelization of SVM training achieves a better performance than the sequential code speed-ups by 15.9s.
基于对称多处理器的支持向量机并行执行
并行计算是指同时使用多个计算资源(如处理器)来解决复杂的计算问题。它已被应用于模式识别、国防、网络搜索引擎、医疗诊断等高端计算领域。本文重点研究了基于对称多处理器(SMP)方法的模式分类技术支持向量机(SVM)的实现。我们对顺序支持向量机程序进行了性能分析,以对SMP方法进行基准测试。结果表明,支持向量机并行化训练比顺序码加速提高了15.9s。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信