Dynamic Bin Packing with Predictions

Mozhengfu Liu, Xueyan Tang
{"title":"Dynamic Bin Packing with Predictions","authors":"Mozhengfu Liu, Xueyan Tang","doi":"10.1145/3570605","DOIUrl":null,"url":null,"abstract":"The MinUsageTime Dynamic Bin Packing (DBP) problem aims to minimize the accumulated bin usage time for packing a sequence of items into bins. It is often used to model job dispatching for optimizing the busy time of servers, where the items and bins match the jobs and servers respectively. It is known that the competitiveness of MinUsageTime DBP has tight bounds of Θ(√łog μ ) and Θ(μ) in the clairvoyant and non-clairvoyant settings respectively, where μ is the max/min duration ratio of all items. In practice, the information about the items' durations (i.e., job lengths) obtained via predictions is usually prone to errors. In this paper, we study the MinUsageTime DBP problem with predictions of the items' durations. We find that an existing O(√łog μ )-competitive clairvoyant algorithm, if using predicted durations rather than real durations for packing, does not provide any bounded performance guarantee when the predictions are adversarially bad. We develop a new online algorithm with a competitive ratio of minØ(ε^2 √łog(ε^2 μ) ), O(μ) (where ε is the maximum multiplicative error of prediction among all items), achieving O(√łog μ) consistency (competitiveness under perfect predictions where ε = 1) and O(μ) robustness (competitiveness under terrible predictions), both of which are asymptotically optimal.","PeriodicalId":426760,"journal":{"name":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","volume":"167 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM on Measurement and Analysis of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3570605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The MinUsageTime Dynamic Bin Packing (DBP) problem aims to minimize the accumulated bin usage time for packing a sequence of items into bins. It is often used to model job dispatching for optimizing the busy time of servers, where the items and bins match the jobs and servers respectively. It is known that the competitiveness of MinUsageTime DBP has tight bounds of Θ(√łog μ ) and Θ(μ) in the clairvoyant and non-clairvoyant settings respectively, where μ is the max/min duration ratio of all items. In practice, the information about the items' durations (i.e., job lengths) obtained via predictions is usually prone to errors. In this paper, we study the MinUsageTime DBP problem with predictions of the items' durations. We find that an existing O(√łog μ )-competitive clairvoyant algorithm, if using predicted durations rather than real durations for packing, does not provide any bounded performance guarantee when the predictions are adversarially bad. We develop a new online algorithm with a competitive ratio of minØ(ε^2 √łog(ε^2 μ) ), O(μ) (where ε is the maximum multiplicative error of prediction among all items), achieving O(√łog μ) consistency (competitiveness under perfect predictions where ε = 1) and O(μ) robustness (competitiveness under terrible predictions), both of which are asymptotically optimal.
动态装箱与预测
MinUsageTime动态箱装箱(DBP)问题的目标是最小化将一系列物品打包到箱中的累积箱使用时间。它通常用于建模作业调度,以优化服务器的繁忙时间,其中项和箱分别与作业和服务器相匹配。我们知道,MinUsageTime DBP在千里眼和非千里眼设置下的竞争力分别具有Θ(√łog μ)和Θ(μ)的紧边界,其中μ为所有项目的最大/最小持续时间比。在实践中,通过预测获得的关于项目持续时间(即作业长度)的信息通常容易出错。在本文中,我们研究了带有项目持续时间预测的MinUsageTime DBP问题。我们发现,现有的O(√łog μ)竞争千里眼算法,如果使用预测持续时间而不是实际持续时间进行打包,当预测结果相对较差时,不能提供任何有界性能保证。我们开发了一种新的在线算法,其竞争比为minØ(ε^2√łog(ε^2 μ)), O(μ)(其中ε为所有项目之间的最大乘法误差),实现了O(√łog μ)一致性(ε = 1的完美预测下的竞争力)和O(μ)鲁棒性(糟糕预测下的竞争力),两者都是渐近最优的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信