{"title":"Evolving viral marketing strategies","authors":"F. Stonedahl, W. Rand, U. Wilensky","doi":"10.1145/1830483.1830701","DOIUrl":null,"url":null,"abstract":"One method of viral marketing involves seeding certain consumers within a population to encourage faster adoption of the product throughout the entire population. However, determining how many and which consumers within a particular social network should be seeded to maximize adoption is challenging. We define a strategy space for consumer seeding by weighting a combination of network characteristics such as average path length, clustering coefficient, and degree. We measure strategy effectiveness by simulating adoption on a Bass-like agent-based model, with five different social network structures: four classic theoretical models (random, lattice, small-world, and preferential attachment) and one empirical (extracted from Twitter friendship data). To discover good seeding strategies, we have developed a new tool, called BehaviorSearch, which uses genetic algorithms to search through the parameter-space of agent-based models. This evolutionary search also provides insight into the interaction between strategies and network structure. Our results show that one simple strategy (ranking by node degree) is near-optimal for the four theoretical networks, but that a more nuanced strategy performs significantly better on the empirical Twitter-based network. We also find a correlation between the optimal seeding budget for a network, and the inequality of the degree distribution.","PeriodicalId":145189,"journal":{"name":"Robert H. Smith School of Business Research Paper Series","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robert H. Smith School of Business Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1830483.1830701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82
Abstract
One method of viral marketing involves seeding certain consumers within a population to encourage faster adoption of the product throughout the entire population. However, determining how many and which consumers within a particular social network should be seeded to maximize adoption is challenging. We define a strategy space for consumer seeding by weighting a combination of network characteristics such as average path length, clustering coefficient, and degree. We measure strategy effectiveness by simulating adoption on a Bass-like agent-based model, with five different social network structures: four classic theoretical models (random, lattice, small-world, and preferential attachment) and one empirical (extracted from Twitter friendship data). To discover good seeding strategies, we have developed a new tool, called BehaviorSearch, which uses genetic algorithms to search through the parameter-space of agent-based models. This evolutionary search also provides insight into the interaction between strategies and network structure. Our results show that one simple strategy (ranking by node degree) is near-optimal for the four theoretical networks, but that a more nuanced strategy performs significantly better on the empirical Twitter-based network. We also find a correlation between the optimal seeding budget for a network, and the inequality of the degree distribution.