A topical link model for community discovery in textual interaction graph

Guoqing Zheng, Jinwen Guo, Lichun Yang, Shengliang Xu, Shenghua Bao, Zhong Su, Dingyi Han, Yong Yu
{"title":"A topical link model for community discovery in textual interaction graph","authors":"Guoqing Zheng, Jinwen Guo, Lichun Yang, Shengliang Xu, Shenghua Bao, Zhong Su, Dingyi Han, Yong Yu","doi":"10.1145/1871437.1871686","DOIUrl":null,"url":null,"abstract":"This paper is concerned with community discovery in textual interaction graph, where the links between entities are indicated by textual documents. Specifically, we propose a Topical Link Model(TLM), which leverages Hierarchical Dirichlet Process(HDP) to introduce hidden topical variable of the links. Other than the use of links, TLM can look into the documents on the links in detail to recover sound communities. Moreover, TLM is a nonparametric model, which is able to learn the number of communities from the data. Extensive experiments on two real world corpora show TLM outperforms two state-of-the-art baseline models, which verify the effectiveness of TLM in determining the proper number of communities and generating sound communities.","PeriodicalId":310611,"journal":{"name":"Proceedings of the 19th ACM international conference on Information and knowledge management","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1871437.1871686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is concerned with community discovery in textual interaction graph, where the links between entities are indicated by textual documents. Specifically, we propose a Topical Link Model(TLM), which leverages Hierarchical Dirichlet Process(HDP) to introduce hidden topical variable of the links. Other than the use of links, TLM can look into the documents on the links in detail to recover sound communities. Moreover, TLM is a nonparametric model, which is able to learn the number of communities from the data. Extensive experiments on two real world corpora show TLM outperforms two state-of-the-art baseline models, which verify the effectiveness of TLM in determining the proper number of communities and generating sound communities.
文本交互图中社区发现的主题链接模型
本文研究了文本交互图中的社区发现,其中实体之间的链接由文本文档表示。具体来说,我们提出了一个主题链接模型(TLM),该模型利用层次狄利克雷过程(HDP)引入链路的隐藏主题变量。除了使用链接之外,TLM还可以详细查看链接上的文档,以恢复良好的社区。此外,TLM是一种非参数模型,它能够从数据中学习到社区的数量。在两个真实语料库上进行的大量实验表明,TLM优于两种最先进的基线模型,这验证了TLM在确定适当数量的社区和生成健全社区方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信