Amitav Tikadar, Saad K. Oudah, A. S. Salman, A. Morshed, T. C. Paul, J. Khan
{"title":"Effect of Inter-Connector on Thermo-Hydraulic Characteristics of Parallel and Counter Flow Mini-Channel Heat Sink","authors":"Amitav Tikadar, Saad K. Oudah, A. S. Salman, A. Morshed, T. C. Paul, J. Khan","doi":"10.1115/IMECE2018-88273","DOIUrl":null,"url":null,"abstract":"A numerical investigation of three-dimensional conjugate heat transfer was performed to quantify the thermal and hydraulic performance of an inter-connected parallel and counter flow mini-channel heat sink under laminar flow condition and within the single-phase regime. The aspect ratio (height/width) and the hydraulic diameter of the mini-channel were 0.33 and 750μm respectively. Three different widths of the inter-connector were selected to analyze the effect of cross flow for Reynolds number ranging from 150 to 1044, at a constant heat flux (20 W/cm2). To understand the fluid flow and heat transfer mechanism inside the inter-connector and their effects on overall thermal performance of the heat sink, Nusselt number (Nu), friction factor, pumping power, and overall thermal resistance were analyzed. Results show that the inter-connector has significantly higher effect on counter flow mini-channel heat sink than parallel flow mini-channel heat sink.","PeriodicalId":307820,"journal":{"name":"Volume 8B: Heat Transfer and Thermal Engineering","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Heat Transfer and Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2018-88273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
A numerical investigation of three-dimensional conjugate heat transfer was performed to quantify the thermal and hydraulic performance of an inter-connected parallel and counter flow mini-channel heat sink under laminar flow condition and within the single-phase regime. The aspect ratio (height/width) and the hydraulic diameter of the mini-channel were 0.33 and 750μm respectively. Three different widths of the inter-connector were selected to analyze the effect of cross flow for Reynolds number ranging from 150 to 1044, at a constant heat flux (20 W/cm2). To understand the fluid flow and heat transfer mechanism inside the inter-connector and their effects on overall thermal performance of the heat sink, Nusselt number (Nu), friction factor, pumping power, and overall thermal resistance were analyzed. Results show that the inter-connector has significantly higher effect on counter flow mini-channel heat sink than parallel flow mini-channel heat sink.