On some Extensions of the Sequential Monte Carlo methods in high-order Hidden Markov Models

M. Allaya, A. Coulibaly, E. Dème, Mouhamadou Moustapha Kâ, Babacar Séne
{"title":"On some Extensions of the Sequential Monte Carlo methods in high-order Hidden Markov Models","authors":"M. Allaya, A. Coulibaly, E. Dème, Mouhamadou Moustapha Kâ, Babacar Séne","doi":"10.16929/AS/2019.1977.145","DOIUrl":null,"url":null,"abstract":"We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear state space models. Namely, we tailor the SMC  methods to handle high-order HMM through the customary recursions of  posterior distributions. It proceeds on mimicking the two-step procedure that is, the prediction step and the update step, in the derivation of the filter  distribution. Once stated, we extend some smoothing recursions as the  Forward-Backward algorithm and the Backward smoother to deal with the actual smoothing distributions in high-order HMM. Finally, we give few examples as an application of these extensions.Key words: Sequential Monte Carlo, high-order HMM, Smoothing, Filtering","PeriodicalId":430341,"journal":{"name":"Afrika Statistika","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Afrika Statistika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/AS/2019.1977.145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We analyze some extensions of the Sequential Monte Carlo (SMC) methods in the context of nonlinear state space models. Namely, we tailor the SMC  methods to handle high-order HMM through the customary recursions of  posterior distributions. It proceeds on mimicking the two-step procedure that is, the prediction step and the update step, in the derivation of the filter  distribution. Once stated, we extend some smoothing recursions as the  Forward-Backward algorithm and the Backward smoother to deal with the actual smoothing distributions in high-order HMM. Finally, we give few examples as an application of these extensions.Key words: Sequential Monte Carlo, high-order HMM, Smoothing, Filtering
序列蒙特卡罗方法在高阶隐马尔可夫模型中的一些扩展
本文分析了序列蒙特卡罗方法在非线性状态空间模型中的一些扩展。也就是说,我们通过后验分布的习惯递归调整SMC方法来处理高阶HMM。它继续模拟两步过程,即预测步骤和更新步骤,在推导滤波器分布。在此基础上,我们将一些平滑递归扩展为前向-后向算法和后向平滑算法来处理高阶HMM中的实际平滑分布。最后,我们给出一些例子作为这些扩展的应用。关键词:顺序蒙特卡罗,高阶HMM,平滑,滤波
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信