Data Preprocessing

M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen
{"title":"Data Preprocessing","authors":"M. S. El-Nasr, Truong Huy Nguyen Dinh, Alessandro Canossa, Anders Drachen","doi":"10.1093/oso/9780192897879.003.0002","DOIUrl":null,"url":null,"abstract":"This chapter focuses on the process of cleaning data and preparing it for further processing. Specifically, the chapter discusses various techniques that you will use, including preprocessing, outlier identification, data consistency, and the normalization or standardization process, used to normalize your data. The chapter further discusses different measurement types and what methods can be used for which types. The chapter also discusses ways to deal with issues you may encounter with inconsistent or dirty data. The chapter takes a more practical approach by integrating several labs with actual game data to demonstrate how you can perform these steps on real game data.","PeriodicalId":137223,"journal":{"name":"Game Data Science","volume":"186 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Game Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oso/9780192897879.003.0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter focuses on the process of cleaning data and preparing it for further processing. Specifically, the chapter discusses various techniques that you will use, including preprocessing, outlier identification, data consistency, and the normalization or standardization process, used to normalize your data. The chapter further discusses different measurement types and what methods can be used for which types. The chapter also discusses ways to deal with issues you may encounter with inconsistent or dirty data. The chapter takes a more practical approach by integrating several labs with actual game data to demonstrate how you can perform these steps on real game data.
数据预处理
本章重点介绍清理数据并为进一步处理做准备的过程。具体来说,本章讨论了您将使用的各种技术,包括预处理,离群值识别,数据一致性以及用于规范化数据的规范化或标准化过程。本章进一步讨论了不同的测量类型以及哪些类型可以使用哪些方法。本章还讨论了处理可能遇到的不一致或脏数据问题的方法。本章采用了一种更实用的方法,将几个实验与实际游戏数据结合起来,演示如何在实际游戏数据上执行这些步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信