Multi-Temporal-Resolution Technique for Action Recognition using C3D: Experimental Study

Bassel S. Chawky, M. Marey, Howida A. Shedeed
{"title":"Multi-Temporal-Resolution Technique for Action Recognition using C3D: Experimental Study","authors":"Bassel S. Chawky, M. Marey, Howida A. Shedeed","doi":"10.1109/ICCES.2018.8639245","DOIUrl":null,"url":null,"abstract":"In any given video containing an action, the motion conveys information complementary to the individual frames. This motion varies in speed for similar actions. Therefore, it is a promising approach to train a separate deep-learning model for different versions of action speeds. In this paper, two novel ideas are explored: single-temporal-resolution single-model (STR-SM) and multi-temporal-resolution multi-model (MTR-MM). The STR-SM model is trained on one specific temporal resolution of the action dataset. This allows the model to accept a longer temporal frame range as input and therefore, a faster action classification. On the other hand, the MTR-MM is a set of STR-SM models, each trained on a different temporal resolution with a late fusion using majority voting achieving more accurate action recognition. Both models have improvements over the traditional training approach, 3.63% and 6% video-wise accuracy respectively.","PeriodicalId":113848,"journal":{"name":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th International Conference on Computer Engineering and Systems (ICCES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCES.2018.8639245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In any given video containing an action, the motion conveys information complementary to the individual frames. This motion varies in speed for similar actions. Therefore, it is a promising approach to train a separate deep-learning model for different versions of action speeds. In this paper, two novel ideas are explored: single-temporal-resolution single-model (STR-SM) and multi-temporal-resolution multi-model (MTR-MM). The STR-SM model is trained on one specific temporal resolution of the action dataset. This allows the model to accept a longer temporal frame range as input and therefore, a faster action classification. On the other hand, the MTR-MM is a set of STR-SM models, each trained on a different temporal resolution with a late fusion using majority voting achieving more accurate action recognition. Both models have improvements over the traditional training approach, 3.63% and 6% video-wise accuracy respectively.
基于C3D的多时间分辨率动作识别技术:实验研究
在任何给定的包含动作的视频中,动作传达的信息与单个帧互补。这个动作在相似的动作中速度不同。因此,为不同版本的动作速度训练单独的深度学习模型是一种很有前途的方法。本文探讨了单时间分辨率单模型(STR-SM)和多时间分辨率多模型(MTR-MM)两种新思路。STR-SM模型是在动作数据集的一个特定时间分辨率上训练的。这允许模型接受更长的时间帧范围作为输入,从而实现更快的动作分类。另一方面,mrr - mm是一组STR-SM模型,每个模型都在不同的时间分辨率上进行训练,并使用多数投票进行后期融合,从而实现更准确的动作识别。这两种模型都比传统的训练方法有了改进,分别达到3.63%和6%的视频准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信