Covariance Matrices Encoding Based on the Log-Euclidean and Affine Invariant Riemannian Metrics

Ioana Ilea, L. Bombrun, S. Said, Y. Berthoumieu
{"title":"Covariance Matrices Encoding Based on the Log-Euclidean and Affine Invariant Riemannian Metrics","authors":"Ioana Ilea, L. Bombrun, S. Said, Y. Berthoumieu","doi":"10.1109/CVPRW.2018.00080","DOIUrl":null,"url":null,"abstract":"This paper presents coding methods used to encode a set of covariance matrices. Starting from a Gaussian mixture model adapted to the log-Euclidean or affine invariant Riemannian metric, we propose a Fisher Vector (FV) descriptor adapted to each of these metrics: the log Euclidean FV (LE FV) and the Riemannian Fisher Vector (RFV). An experiment is conducted on four conventional texture databases to compare these two metrics and to illustrate the potential of these FV based descriptors compared to state-of-the-art BoW and VLAD based descriptors. A focus is also done to illustrate the advantage of using the Fisher information matrix during the derivation of the FV.","PeriodicalId":150600,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2018.00080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents coding methods used to encode a set of covariance matrices. Starting from a Gaussian mixture model adapted to the log-Euclidean or affine invariant Riemannian metric, we propose a Fisher Vector (FV) descriptor adapted to each of these metrics: the log Euclidean FV (LE FV) and the Riemannian Fisher Vector (RFV). An experiment is conducted on four conventional texture databases to compare these two metrics and to illustrate the potential of these FV based descriptors compared to state-of-the-art BoW and VLAD based descriptors. A focus is also done to illustrate the advantage of using the Fisher information matrix during the derivation of the FV.
基于对数欧几里德和仿射不变黎曼度量的协方差矩阵编码
本文给出了一组协方差矩阵的编码方法。从适用于对数欧几里得或仿射不变黎曼度量的高斯混合模型开始,我们提出了适用于这些度量的Fisher向量(FV)描述符:对数欧几里得FV (LE FV)和黎曼Fisher向量(RFV)。在四个传统纹理数据库上进行了一项实验,以比较这两个指标,并说明这些基于FV的描述符与最先进的基于BoW和VLAD的描述符相比的潜力。重点说明了在FV推导过程中使用Fisher信息矩阵的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信