Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation

Á. Sánchez-García, H. Rios-Figueroa, Xavier Limon-Riaño, J. Sanchez-Garcia, K. Cortés-Verdín
{"title":"Towards Learning Obstacles to Avoid Collisions in Autonomous Robot Navigation","authors":"Á. Sánchez-García, H. Rios-Figueroa, Xavier Limon-Riaño, J. Sanchez-Garcia, K. Cortés-Verdín","doi":"10.1109/icmeae.2019.00012","DOIUrl":null,"url":null,"abstract":"Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles.","PeriodicalId":422872,"journal":{"name":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icmeae.2019.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Avoiding obstacles is one of the main tasks in robotic navigation. In this paper, robot navigation using monocular vision is presented. Therefore, an accuracy in the segmentation of obstacles is necessary to avoid collisions by estimating the Time-to-Contact. Our proposal in this research process is based on using YOLO so that through a training process, the robot identifies which regions of the image are potentially obstacles. The experimentation was performed in a real environment, with low daylight and without controlling lighting parameters. The first results of this approach are satisfactory although this project will continue with the learning of other obstacles.
自主机器人导航中避碰障碍学习研究
避障是机器人导航的主要任务之一。提出了一种基于单目视觉的机器人导航方法。因此,通过估计接触时间来避免碰撞,需要对障碍物进行精确的分割。我们在这个研究过程中的建议是基于使用YOLO,通过一个训练过程,机器人识别图像的哪些区域是潜在的障碍。实验是在一个真实的环境中进行的,日光不足,没有控制照明参数。这种方法的初步结果是令人满意的,尽管该项目将在了解其他障碍的情况下继续进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信