Some results on the asymptotic behavior of functions on subsets of the natural numbers

ACM-SE 17 Pub Date : 1979-04-09 DOI:10.1145/503506.503547
D. McAllister, Y. Patt
{"title":"Some results on the asymptotic behavior of functions on subsets of the natural numbers","authors":"D. McAllister, Y. Patt","doi":"10.1145/503506.503547","DOIUrl":null,"url":null,"abstract":"When analyzing the computational complexity of divide and conquer algorithms, the complexity function is usually specified by means of a recurrence relation where the argument is restricted to a subset S of the natural numbers, N. This system is then used to characterize the asymptotic behavior of the algorithm for a corresponding restricted set of inputs. A careful and sometimes complicated argument is then carried out to make assertions about the asymptotic behavior of the algorithm for all inputs (Aho, Hopcroft and Ullman [1974]). In certain cases, the argument can be greatly simplified if the complexity function and the set S have special properties. In this paper, we develop these properties for some important classes of asymptotic behavior.","PeriodicalId":258426,"journal":{"name":"ACM-SE 17","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1979-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM-SE 17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/503506.503547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

When analyzing the computational complexity of divide and conquer algorithms, the complexity function is usually specified by means of a recurrence relation where the argument is restricted to a subset S of the natural numbers, N. This system is then used to characterize the asymptotic behavior of the algorithm for a corresponding restricted set of inputs. A careful and sometimes complicated argument is then carried out to make assertions about the asymptotic behavior of the algorithm for all inputs (Aho, Hopcroft and Ullman [1974]). In certain cases, the argument can be greatly simplified if the complexity function and the set S have special properties. In this paper, we develop these properties for some important classes of asymptotic behavior.
函数在自然数子集上的渐近性的一些结果
在分析分治算法的计算复杂度时,复杂度函数通常通过递归关系来指定,其中参数被限制为自然数n的一个子集S,然后使用该系统来表征算法对于相应的限制输入集的渐近行为。然后进行仔细的,有时是复杂的论证,以断言算法对所有输入的渐近行为(Aho, Hopcroft和Ullman[1974])。在某些情况下,如果复杂度函数和集合S具有特殊性质,则论证可以大大简化。在本文中,我们对一些重要的渐近行为类给出了这些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信