Sets of transfer times with small densities

M. Bjorklund, A. Fish, I. Shkredov
{"title":"Sets of transfer times with small densities","authors":"M. Bjorklund, A. Fish, I. Shkredov","doi":"10.5802/JEP.147","DOIUrl":null,"url":null,"abstract":"We consider in this paper the set of transfer times between two measurable subsets of positive measures in an ergodic probability measure-preserving system of a countable abelian group. If the lower asymptotic density of the transfer times is small, then we prove this set must be either periodic or Sturmian. Our results can be viewed as ergodic-theoretical extensions of some classical sumset theorems in compact abelian groups due to Kneser. Our proofs are based on a correspondence principle for action sets which was developed previously by the first two authors.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/JEP.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider in this paper the set of transfer times between two measurable subsets of positive measures in an ergodic probability measure-preserving system of a countable abelian group. If the lower asymptotic density of the transfer times is small, then we prove this set must be either periodic or Sturmian. Our results can be viewed as ergodic-theoretical extensions of some classical sumset theorems in compact abelian groups due to Kneser. Our proofs are based on a correspondence principle for action sets which was developed previously by the first two authors.
小密度的转移时间集合
本文研究了可数阿贝尔群的遍历概率测度保持系统中两个可测正测度子集间的传递时间集。如果传递时间的下渐近密度很小,则证明该集合要么是周期的,要么是斯图尔曼的。我们的结果可以看作是由Kneser引起的紧阿贝尔群中一些经典sumset定理的遍历理论推广。我们的证明是基于前两位作者先前发展的行动集对应原理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信