Application of Complete Local Binary Pattern Method for facial expression recognition

S. Singh, Ritesh Maurya, Ajay Mittal
{"title":"Application of Complete Local Binary Pattern Method for facial expression recognition","authors":"S. Singh, Ritesh Maurya, Ajay Mittal","doi":"10.1109/IHCI.2012.6481801","DOIUrl":null,"url":null,"abstract":"We propose a novel approach using Complete Local Binary Pattern feature generation method for facial expression recognition with the help of Multi-Class Support Vector Machine. Complete Local Binary Pattern method is an extended version of Local Binary Pattern method with a little difference. LBP feature considers only signs of local differences, whereas CLBP feature considers both signs and magnitude of local differences as well as original center gray level value. CLBP and LBP have same computational complexity while CLBP performs better facial expression recognition over LBP using SVM training and multiclass classification with binary SVM classifiers. The experimental result demonstrate the average efficiency of recognition of propose method (35 images) with CLBP is 86.4%, while with LBP and CCV is 84.1255% and 75.83% in the JAFFE database.","PeriodicalId":107245,"journal":{"name":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 4th International Conference on Intelligent Human Computer Interaction (IHCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHCI.2012.6481801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We propose a novel approach using Complete Local Binary Pattern feature generation method for facial expression recognition with the help of Multi-Class Support Vector Machine. Complete Local Binary Pattern method is an extended version of Local Binary Pattern method with a little difference. LBP feature considers only signs of local differences, whereas CLBP feature considers both signs and magnitude of local differences as well as original center gray level value. CLBP and LBP have same computational complexity while CLBP performs better facial expression recognition over LBP using SVM training and multiclass classification with binary SVM classifiers. The experimental result demonstrate the average efficiency of recognition of propose method (35 images) with CLBP is 86.4%, while with LBP and CCV is 84.1255% and 75.83% in the JAFFE database.
完全局部二值模式方法在面部表情识别中的应用
在多类支持向量机的帮助下,提出了一种基于完全局部二值模式特征生成的面部表情识别新方法。完全局部二进制模式方法是局部二进制模式方法的一种扩展版本,只是稍有不同。LBP特征只考虑局部差异的符号,而CLBP特征既考虑局部差异的符号和大小,又考虑原始中心灰度值。CLBP与LBP具有相同的计算复杂度,而CLBP在使用SVM训练和二元SVM分类器进行多类分类的情况下,面部表情识别性能优于LBP。实验结果表明,在JAFFE数据库中,CLBP对35幅图像的平均识别效率为86.4%,而LBP和CCV的平均识别效率分别为84.1255%和75.83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信