3D Segmentation,Visualization and Quantitative Analysis of Differentiation Activity for Mouse Embryonic Stem Cells using Time-Lapse Fluorescence Microscopy Images

Yuan-Hsiang Chang, H. Yokota, K. Abe, C. Chen, Ming-Dar Tsai
{"title":"3D Segmentation,Visualization and Quantitative Analysis of Differentiation Activity for Mouse Embryonic Stem Cells using Time-Lapse Fluorescence Microscopy Images","authors":"Yuan-Hsiang Chang, H. Yokota, K. Abe, C. Chen, Ming-Dar Tsai","doi":"10.1109/BIBE.2017.00-65","DOIUrl":null,"url":null,"abstract":"This paper explores the feasibility of automatic 3D segmentation, visualization and quantitative analysis for differentiation activities of mouse embryonic stem cells using time-lapse confocal fluorescence microscopy images. Technical approaches include bilateral filtering, mean-shift segmentation, adaptive thresholding, watershed segmentation, connected component labeling, and video tracking. Our method processes simultaneously two image channels, one for cytoplasm and the other for nuclei. The nucleus images are used to segment 2D and then 3D nuclei and to track each nucleus and calculate velocities of the 3D nucleus. The cytoplasm images are used to help nucleus segmentation and calculate the S/V (surface to volume) ratio of cytoplasm surrounding a nucleus. Volume rendering on the time-lapse fluorescence images generates time-series 3D images for visualizing the dynamic changes of cell velocity and S/V ratios. Using our prototype system, cells with different amount of EGFP fluorescent protein possesses different differentiation activity (velocity and S/V ratio) can be visualized and quantitatively analyzed.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper explores the feasibility of automatic 3D segmentation, visualization and quantitative analysis for differentiation activities of mouse embryonic stem cells using time-lapse confocal fluorescence microscopy images. Technical approaches include bilateral filtering, mean-shift segmentation, adaptive thresholding, watershed segmentation, connected component labeling, and video tracking. Our method processes simultaneously two image channels, one for cytoplasm and the other for nuclei. The nucleus images are used to segment 2D and then 3D nuclei and to track each nucleus and calculate velocities of the 3D nucleus. The cytoplasm images are used to help nucleus segmentation and calculate the S/V (surface to volume) ratio of cytoplasm surrounding a nucleus. Volume rendering on the time-lapse fluorescence images generates time-series 3D images for visualizing the dynamic changes of cell velocity and S/V ratios. Using our prototype system, cells with different amount of EGFP fluorescent protein possesses different differentiation activity (velocity and S/V ratio) can be visualized and quantitatively analyzed.
利用延时荧光显微镜图像对小鼠胚胎干细胞分化活性进行三维分割、可视化和定量分析
本文探讨了利用延时共聚焦荧光显微镜图像对小鼠胚胎干细胞分化活动进行自动三维分割、可视化和定量分析的可行性。技术方法包括双边滤波、均值偏移分割、自适应阈值分割、分水岭分割、连接分量标记和视频跟踪。我们的方法同时处理两个图像通道,一个用于细胞质,另一个用于细胞核。利用核图像对二维核进行分割,然后对三维核进行分割,并对每个核进行跟踪,计算三维核的速度。细胞质图像用于帮助细胞核分割和计算细胞核周围细胞质的S/V(表面体积)比。对延时荧光图像进行体绘制,生成时间序列三维图像,可视化细胞速度和S/V比的动态变化。使用我们的原型系统,可以对不同EGFP荧光蛋白量的细胞具有不同的分化活性(速度和S/V比)进行可视化和定量分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信