Simulation of a new hybrid particle swarm optimization algorithm

M.M. Noel, T. Jannett
{"title":"Simulation of a new hybrid particle swarm optimization algorithm","authors":"M.M. Noel, T. Jannett","doi":"10.1109/SSST.2004.1295638","DOIUrl":null,"url":null,"abstract":"In this paper a new hybrid particle swarm optimization (PSO) algorithm is introduced which makes use of gradient information to achieve faster convergence without getting trapped in local minima. Simulation results comparing the standard PSO algorithm to the new hybrid PSO algorithm are presented. The De Jong test suite of optimization problems is used to test the performance of all algorithms. Performance measures to compare the performance of different algorithms are discussed. The new hybrid PSO algorithm is shown to converge faster for a certain class of optimization problems.","PeriodicalId":309617,"journal":{"name":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirty-Sixth Southeastern Symposium on System Theory, 2004. Proceedings of the","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.2004.1295638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

In this paper a new hybrid particle swarm optimization (PSO) algorithm is introduced which makes use of gradient information to achieve faster convergence without getting trapped in local minima. Simulation results comparing the standard PSO algorithm to the new hybrid PSO algorithm are presented. The De Jong test suite of optimization problems is used to test the performance of all algorithms. Performance measures to compare the performance of different algorithms are discussed. The new hybrid PSO algorithm is shown to converge faster for a certain class of optimization problems.
一种新的混合粒子群优化算法的仿真
本文提出了一种新的混合粒子群优化算法,该算法利用梯度信息实现快速收敛,避免陷入局部极小值。给出了标准粒子群算法与新型混合粒子群算法的仿真结果。De Jong优化问题测试套件用于测试所有算法的性能。讨论了比较不同算法性能的性能指标。对于一类优化问题,新的混合粒子群算法具有较快的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信