Probabilistic latent component analysis for radar signal detection

Tao Ying, Gaoming Huang, Cheng Zhou
{"title":"Probabilistic latent component analysis for radar signal detection","authors":"Tao Ying, Gaoming Huang, Cheng Zhou","doi":"10.1109/CISP.2013.6743931","DOIUrl":null,"url":null,"abstract":"The detection of radar signal submerged in noise has always been substantial for radar performance. An algorithm of radar signal detection based on probabilistic latent component analysis is proposed in this paper. By employing probabilistic latent component analysis, signal spectrogram is explicitly modeled as a mixture of marginal distribution products and noise is described by a dictionary of marginals. The estimation of the most appropriate marginal distributions is performed using Expectation-Maximization algorithm. The goal of signal detection is achieved by selective reconstruction method of extracting signal from noise. Simulation results demonstrate the effectiveness of the proposed algorithm and the improvement of signal detection over wavelet detection.","PeriodicalId":442320,"journal":{"name":"2013 6th International Congress on Image and Signal Processing (CISP)","volume":"261 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 6th International Congress on Image and Signal Processing (CISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP.2013.6743931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The detection of radar signal submerged in noise has always been substantial for radar performance. An algorithm of radar signal detection based on probabilistic latent component analysis is proposed in this paper. By employing probabilistic latent component analysis, signal spectrogram is explicitly modeled as a mixture of marginal distribution products and noise is described by a dictionary of marginals. The estimation of the most appropriate marginal distributions is performed using Expectation-Maximization algorithm. The goal of signal detection is achieved by selective reconstruction method of extracting signal from noise. Simulation results demonstrate the effectiveness of the proposed algorithm and the improvement of signal detection over wavelet detection.
雷达信号探测的概率潜分量分析
淹没在噪声中的雷达信号的检测一直是雷达性能的重要组成部分。提出了一种基于概率潜分量分析的雷达信号检测算法。利用概率潜分量分析,将信号谱图明确地建模为边际分布乘积的混合物,并用边际字典描述噪声。使用期望最大化算法估计最合适的边际分布。通过从噪声中提取信号的选择性重构方法来达到信号检测的目的。仿真结果证明了该算法的有效性,并且在信号检测方面比小波检测有所改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信