A Deep Learning Hybrid CNN Framework Approach for Vegetation Cover Mapping Using Deep Features

Rahul Nijhawan, Himanshu Sharma, H. Sahni, Ashita Batra
{"title":"A Deep Learning Hybrid CNN Framework Approach for Vegetation Cover Mapping Using Deep Features","authors":"Rahul Nijhawan, Himanshu Sharma, H. Sahni, Ashita Batra","doi":"10.1109/SITIS.2017.41","DOIUrl":null,"url":null,"abstract":"Vegetation cover mapping is an imperative task of monitoring the change in vegetation as it can help us meet sustenance requirements. In this study, we explore the future potential of multilayer Deep learning framework (DL) that comprises of hybrid of CNN's, for mapping vegetation cover area as DL is a congenial state-of-art algorithm for implementing image processing. This study proposes a novel DL framework exploiting hybrids of CNN's with Local binary pattern and GIST features. Every CNN is fed with disparate combination of multi-spectral Sentinel 2 satellite imagery bands (spatial resolution of 10m), texture and topographic parameters of Uttarakhand (30° 15' N, 79° 15' E) region, India. Our proposed DL framework outperformed the state-of-art algorithms with a classification accuracy of 88.43%.","PeriodicalId":153165,"journal":{"name":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2017.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

Abstract

Vegetation cover mapping is an imperative task of monitoring the change in vegetation as it can help us meet sustenance requirements. In this study, we explore the future potential of multilayer Deep learning framework (DL) that comprises of hybrid of CNN's, for mapping vegetation cover area as DL is a congenial state-of-art algorithm for implementing image processing. This study proposes a novel DL framework exploiting hybrids of CNN's with Local binary pattern and GIST features. Every CNN is fed with disparate combination of multi-spectral Sentinel 2 satellite imagery bands (spatial resolution of 10m), texture and topographic parameters of Uttarakhand (30° 15' N, 79° 15' E) region, India. Our proposed DL framework outperformed the state-of-art algorithms with a classification accuracy of 88.43%.
基于深度特征的植被覆盖映射的深度学习混合CNN框架方法
植被覆盖制图是监测植被变化的一项必要任务,因为它可以帮助我们满足生存需求。在本研究中,我们探索了多层深度学习框架(DL)的未来潜力,该框架由CNN的混合组成,用于绘制植被覆盖面积,因为DL是实现图像处理的一种合适的最先进算法。本研究提出了一种利用CNN与局部二进制模式和GIST特征混合的新型深度学习框架。每个CNN都是用印度Uttarakhand(30°15′N, 79°15′E)地区的多光谱Sentinel 2卫星图像波段(空间分辨率为10m)、纹理和地形参数的不同组合来馈送的。我们提出的深度学习框架以88.43%的分类准确率优于目前最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信