Non-linear, shape independent object tracking based on 2D lidar data

M. Thuy, F. Puente León
{"title":"Non-linear, shape independent object tracking based on 2D lidar data","authors":"M. Thuy, F. Puente León","doi":"10.1109/IVS.2009.5164334","DOIUrl":null,"url":null,"abstract":"The paper presents a new lidar-based approach to object tracking. To this end, range data are recorded by two vehicle-born lidar scanners and registered in a common coordinate system. In contrary to common approaches, particle filters are employed to track the objects. This ensures no linearization of the underlying non-linear process model and, thus, a decreasing estimation error. For the object association, a new method is proposed that considers the knowledge about the object shape as well. Based on a statistical formulation, this ensures a robust object assignment even in ambiguous traffic scenes.","PeriodicalId":396749,"journal":{"name":"2009 IEEE Intelligent Vehicles Symposium","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Intelligent Vehicles Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2009.5164334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

The paper presents a new lidar-based approach to object tracking. To this end, range data are recorded by two vehicle-born lidar scanners and registered in a common coordinate system. In contrary to common approaches, particle filters are employed to track the objects. This ensures no linearization of the underlying non-linear process model and, thus, a decreasing estimation error. For the object association, a new method is proposed that considers the knowledge about the object shape as well. Based on a statistical formulation, this ensures a robust object assignment even in ambiguous traffic scenes.
基于二维激光雷达数据的非线性、形状无关的目标跟踪
提出了一种新的基于激光雷达的目标跟踪方法。为此,距离数据由两个车载激光雷达扫描仪记录,并在一个共同的坐标系中进行登记。与通常的方法相反,粒子过滤器被用来跟踪物体。这确保了潜在的非线性过程模型不会线性化,从而降低了估计误差。对于物体的关联,提出了一种考虑物体形状知识的关联方法。基于统计公式,这确保了即使在模糊的交通场景中也能实现鲁棒的目标分配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信