On using historical update information for instance identification in federated databases

A. Si, Chi C. Ying, D. McLeod
{"title":"On using historical update information for instance identification in federated databases","authors":"A. Si, Chi C. Ying, D. McLeod","doi":"10.1109/COOPIS.1996.554999","DOIUrl":null,"url":null,"abstract":"To support database interoperability in federated databases systems, it is critical to be able to identify (potentially) equivalent data instances from individual autonomous database components. Since the components in a federation are autonomous, their data may be updated asynchronously, viz., modifications to a real world entity may be captured in different databases at different times; the authors term this effect update heterogeneity. Existing approaches largely base data instance similarity identification only on current attribute/property values; in the face of update heterogeneity, this is inadequate. They present an approach to address the problem of update heterogeneity in the federated databases context. They employ a probabilistic model, which utilizes historical database update information to estimate the degree of similarity between candidate data instances from different database components. They employ transaction history (log) information to this end, which is typically already available in the component database systems. They have experimentally implemented and tested this approach within the context of a prototype experimental federated databases system, FeXpress.","PeriodicalId":314823,"journal":{"name":"Proceedings First IFCIS International Conference on Cooperative Information Systems","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First IFCIS International Conference on Cooperative Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COOPIS.1996.554999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

To support database interoperability in federated databases systems, it is critical to be able to identify (potentially) equivalent data instances from individual autonomous database components. Since the components in a federation are autonomous, their data may be updated asynchronously, viz., modifications to a real world entity may be captured in different databases at different times; the authors term this effect update heterogeneity. Existing approaches largely base data instance similarity identification only on current attribute/property values; in the face of update heterogeneity, this is inadequate. They present an approach to address the problem of update heterogeneity in the federated databases context. They employ a probabilistic model, which utilizes historical database update information to estimate the degree of similarity between candidate data instances from different database components. They employ transaction history (log) information to this end, which is typically already available in the component database systems. They have experimentally implemented and tested this approach within the context of a prototype experimental federated databases system, FeXpress.
在联邦数据库中使用历史更新信息进行实例标识
为了支持联邦数据库系统中的数据库互操作性,能够从各个自治数据库组件中识别(潜在的)等效数据实例是至关重要的。由于联邦中的组件是自治的,它们的数据可以异步更新,也就是说,对现实世界实体的修改可以在不同的数据库中在不同的时间被捕获;作者称这种效应为更新异质性。现有的方法很大程度上仅基于当前属性/属性值来识别数据实例的相似性;面对更新的异构性,这是不够的。它们提供了一种解决联邦数据库上下文中更新异构问题的方法。它们采用概率模型,该模型利用历史数据库更新信息来估计来自不同数据库组件的候选数据实例之间的相似程度。它们为此使用事务历史(日志)信息,这些信息通常已经在组件数据库系统中可用。他们已经在一个原型实验性联邦数据库系统FeXpress的上下文中实验性地实现和测试了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信