Spatial prediction of soil organic matter in Adingnigon (Benin) using Bayesian Maximum Entropy (BME)

E. E. Gongnet, C. Agbangba, Tranquillin Sédjro Affossogbe, R. G. Kakaï
{"title":"Spatial prediction of soil organic matter in Adingnigon (Benin) using Bayesian Maximum Entropy (BME)","authors":"E. E. Gongnet, C. Agbangba, Tranquillin Sédjro Affossogbe, R. G. Kakaï","doi":"10.16929/ajas/2022.1279.268","DOIUrl":null,"url":null,"abstract":"Demographic pressure and climate change have heavily affected soil fertility. Proper soil management requires the understanding of the spatial variation of soil properties. In this study, Bayesian maximum Entropy (BME) was used to explore the variation of soil pH and soil organic matter (SOM) at Adingningon (Benin) using 106 soil samples. The predicting maps indicated a lower concentration (0.6 to 0.8g/kg) of SOM toward the center and pH mostly around 5.8 to 6.5 with lower error variance, suggesting an acidic soil. This results provide useful information for managing soil fertility to improve crop yields.\\\\","PeriodicalId":332314,"journal":{"name":"African Journal of Applied Statistics","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Journal of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16929/ajas/2022.1279.268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Demographic pressure and climate change have heavily affected soil fertility. Proper soil management requires the understanding of the spatial variation of soil properties. In this study, Bayesian maximum Entropy (BME) was used to explore the variation of soil pH and soil organic matter (SOM) at Adingningon (Benin) using 106 soil samples. The predicting maps indicated a lower concentration (0.6 to 0.8g/kg) of SOM toward the center and pH mostly around 5.8 to 6.5 with lower error variance, suggesting an acidic soil. This results provide useful information for managing soil fertility to improve crop yields.\\
基于贝叶斯最大熵(BME)的贝宁阿丁尼贡土壤有机质空间预测
人口压力和气候变化严重影响了土壤肥力。正确的土壤管理需要了解土壤性质的空间变化。本研究利用贝叶斯最大熵(BME)分析了贝宁Adingningon地区106个土壤样品的pH和有机质的变化。预测图显示,土壤中SOM浓度较低(0.6 ~ 0.8g/kg), pH值在5.8 ~ 6.5之间,误差方差较小,表明土壤为酸性土壤。这一结果为管理土壤肥力以提高作物产量提供了有用的信息
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信