Distilling weighted finite automata from arbitrary probabilistic models

A. Suresh, Brian Roark, M. Riley, Vlad Schogol
{"title":"Distilling weighted finite automata from arbitrary probabilistic models","authors":"A. Suresh, Brian Roark, M. Riley, Vlad Schogol","doi":"10.18653/v1/W19-3112","DOIUrl":null,"url":null,"abstract":"Weighted finite automata (WFA) are often used to represent probabilistic models, such as n-gram language models, since they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a weighted finite automaton such that the Kullback-Leibler divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization, both of which can be performed efficiently. We demonstrate the usefulness of our approach on some tasks including distilling n-gram models from neural models.","PeriodicalId":286427,"journal":{"name":"Finite-State Methods and Natural Language Processing","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite-State Methods and Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-3112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Weighted finite automata (WFA) are often used to represent probabilistic models, such as n-gram language models, since they are efficient for recognition tasks in time and space. The probabilistic source to be represented as a WFA, however, may come in many forms. Given a generic probabilistic model over sequences, we propose an algorithm to approximate it as a weighted finite automaton such that the Kullback-Leibler divergence between the source model and the WFA target model is minimized. The proposed algorithm involves a counting step and a difference of convex optimization, both of which can be performed efficiently. We demonstrate the usefulness of our approach on some tasks including distilling n-gram models from neural models.
从任意概率模型中提取加权有限自动机
加权有限自动机(WFA)通常用于表示概率模型,如n-gram语言模型,因为它们对于时间和空间的识别任务是有效的。然而,要表示为WFA的概率源可以有多种形式。给定序列上的一般概率模型,我们提出了一种将其近似为加权有限自动机的算法,使得源模型和WFA目标模型之间的Kullback-Leibler散度最小。该算法包含一个计数步骤和一个差分凸优化,两者都能有效地执行。我们证明了我们的方法在一些任务上的有效性,包括从神经模型中提取n-gram模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信