Machine Hearing for Industrial Fault Diagnosis

Yu Zhang, Miguel Martínez-García
{"title":"Machine Hearing for Industrial Fault Diagnosis","authors":"Yu Zhang, Miguel Martínez-García","doi":"10.1109/CASE48305.2020.9216787","DOIUrl":null,"url":null,"abstract":"This paper proposes to apply a machine hearing framework for industrial fault diagnosis, which is inspired by humans’ “listening and diagnostic” capability in identifying machinery faults. The proposed method combines simplified human auditory functionalities with machine learning, aiming to model in a more biologically plausible way. It includes primarily using cochleagram to extract useful time-frequency information in sound signals -representing the cochlea filtering properties in human hearing. Then, a recurrent neural network with long short-term memory layers is constructed to learn and classify the cochleagrams for fault diagnosis – this is to incorporate memory elements in temporal information processing. The proposed method is validated with an experimental study on bearing fault diagnosis using acoustic measurements, while the developed machine hearing scheme could be beneficial to many industrial fault diagnosis applications, e.g., for aeronautical, automotive, marine, railway and manufacturing industry.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"89 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9216787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes to apply a machine hearing framework for industrial fault diagnosis, which is inspired by humans’ “listening and diagnostic” capability in identifying machinery faults. The proposed method combines simplified human auditory functionalities with machine learning, aiming to model in a more biologically plausible way. It includes primarily using cochleagram to extract useful time-frequency information in sound signals -representing the cochlea filtering properties in human hearing. Then, a recurrent neural network with long short-term memory layers is constructed to learn and classify the cochleagrams for fault diagnosis – this is to incorporate memory elements in temporal information processing. The proposed method is validated with an experimental study on bearing fault diagnosis using acoustic measurements, while the developed machine hearing scheme could be beneficial to many industrial fault diagnosis applications, e.g., for aeronautical, automotive, marine, railway and manufacturing industry.
机器听觉用于工业故障诊断
本文借鉴人类在机械故障识别中的“倾听和诊断”能力,提出将机器听觉框架应用于工业故障诊断。该方法将简化的人类听觉功能与机器学习相结合,旨在以生物学上更合理的方式建模。它主要包括利用耳蜗图从声音信号中提取有用的时频信息——代表人类听觉中耳蜗的过滤特性。然后,构建具有长短期记忆层的递归神经网络对耳垢进行学习和分类,以进行故障诊断,这是将记忆元素融入到时间信息处理中。基于声学测量的轴承故障诊断实验研究验证了该方法的有效性,该方法可用于航空、汽车、船舶、铁路和制造业等行业的故障诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信