Biofloc Farming with IoT and Machine Learning Predictive Water Quality System

Abdelmoneim A. Bakhit, M. Jamlos, Nura A. Alhaj, R. Mamat
{"title":"Biofloc Farming with IoT and Machine Learning Predictive Water Quality System","authors":"Abdelmoneim A. Bakhit, M. Jamlos, Nura A. Alhaj, R. Mamat","doi":"10.1109/RFM56185.2022.10065258","DOIUrl":null,"url":null,"abstract":"Biofloc fish farming system depends on full-time monitoring of water quality. The Internet of Things (IoT) can play a vital role in promoting development. However, only a few are able to do stream or real-time predictive analytics at a high cost. Therefore, This article introduces a Biofloc monitoring system based on IoT., which is proficient in performing stream analytics and predictive at a lower cost. This paper evaluates the predictive analytics of the Autoregressive Integrated Moving Average (ARIMA) based on Percentage Error (PE) and Prediction Accuracy (PA). Findings show that ARIMA’s PE is 1.96%, 7.83 %, 1.78%, 12.17%, 4.52% and 0.58%, for DO, EC, pH TDS, Temperature and water volume, respectively which led to achieving higher prediction accuracy (PA) percentage of 98.03%, 92.16%, 98.21%, 87.82%, 95.47% and 99.41% correspondingly.","PeriodicalId":171480,"journal":{"name":"2022 IEEE International RF and Microwave Conference (RFM)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International RF and Microwave Conference (RFM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFM56185.2022.10065258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biofloc fish farming system depends on full-time monitoring of water quality. The Internet of Things (IoT) can play a vital role in promoting development. However, only a few are able to do stream or real-time predictive analytics at a high cost. Therefore, This article introduces a Biofloc monitoring system based on IoT., which is proficient in performing stream analytics and predictive at a lower cost. This paper evaluates the predictive analytics of the Autoregressive Integrated Moving Average (ARIMA) based on Percentage Error (PE) and Prediction Accuracy (PA). Findings show that ARIMA’s PE is 1.96%, 7.83 %, 1.78%, 12.17%, 4.52% and 0.58%, for DO, EC, pH TDS, Temperature and water volume, respectively which led to achieving higher prediction accuracy (PA) percentage of 98.03%, 92.16%, 98.21%, 87.82%, 95.47% and 99.41% correspondingly.
生物絮团农业与物联网和机器学习预测水质系统
生物絮团养鱼系统依赖于对水质的全天候监测。物联网(IoT)在促进发展方面可以发挥至关重要的作用。然而,只有少数公司能够以高昂的成本进行流或实时预测分析。因此,本文介绍了一种基于物联网的Biofloc监测系统。该公司以较低的成本精通流分析和预测。本文评价了基于百分比误差(PE)和预测精度(PA)的自回归综合移动平均(ARIMA)预测分析方法。结果表明,ARIMA对DO、EC、pH TDS、温度和水量的预测准确率分别为1.96%、7.83%、1.78%、12.17%、4.52%和0.58%,预测准确率分别为98.03%、92.16%、98.21%、87.82%、95.47%和99.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信