Robust deep learning framework for the detection of melanoma in images

Trisha Sarkar, Anushka Khare, Mohit Parekh, Param Mehta, Avani Bhuva
{"title":"Robust deep learning framework for the detection of melanoma in images","authors":"Trisha Sarkar, Anushka Khare, Mohit Parekh, Param Mehta, Avani Bhuva","doi":"10.1109/IBSSC56953.2022.10037456","DOIUrl":null,"url":null,"abstract":"Melanoma, a type of skin cancer, occurs when melanocytes become cancerous and is a common cause of death in adults. The presence of melanoma can be conclusively proved through biopsies, but these lap reports often take time. Early detection of melanoma could improve mortality rates and reduce costs. AI-based assistive tools can aid early detection. Most studies focus on detection either in dermoscopic images or in non-dermoscopic images, not both. In this paper, we propose a novel generalised framework which can detect melanoma in both dermoscopic and non-dermoscopic images. The framework includes a preprocessing pipeline, data augmentation and resolving class imbalances, followed by a VGG-16 model. The model gives a sensitivity (for melanoma cases) of 87% on non-dermoscopic images and 91 % on dermoscopic images.","PeriodicalId":426897,"journal":{"name":"2022 IEEE Bombay Section Signature Conference (IBSSC)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Bombay Section Signature Conference (IBSSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBSSC56953.2022.10037456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanoma, a type of skin cancer, occurs when melanocytes become cancerous and is a common cause of death in adults. The presence of melanoma can be conclusively proved through biopsies, but these lap reports often take time. Early detection of melanoma could improve mortality rates and reduce costs. AI-based assistive tools can aid early detection. Most studies focus on detection either in dermoscopic images or in non-dermoscopic images, not both. In this paper, we propose a novel generalised framework which can detect melanoma in both dermoscopic and non-dermoscopic images. The framework includes a preprocessing pipeline, data augmentation and resolving class imbalances, followed by a VGG-16 model. The model gives a sensitivity (for melanoma cases) of 87% on non-dermoscopic images and 91 % on dermoscopic images.
图像中黑色素瘤检测的鲁棒深度学习框架
黑色素瘤是一种皮肤癌,发生在黑色素细胞癌变时,是成年人死亡的常见原因。黑色素瘤的存在可以通过活组织检查得到最终证实,但这些报告往往需要时间。早期发现黑色素瘤可以提高死亡率并降低成本。基于人工智能的辅助工具可以帮助早期发现。大多数研究都集中在皮肤镜图像或非皮肤镜图像的检测上,而不是两者兼而有之。在本文中,我们提出了一种新的广义框架,可以在皮肤镜和非皮肤镜图像中检测黑色素瘤。该框架包括预处理管道、数据增强和解决类失衡,然后是VGG-16模型。该模型在非皮肤镜图像上的灵敏度为87%,在皮肤镜图像上的灵敏度为91%(对于黑色素瘤病例)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信