Adaptive Sliding-Mode H∞ Control of PMLSM Drive System via Interval Type-2 Petri Fuzzy-Neural-Network for a Two-Dimensional X-Y Table

F. El-Sousy, M. Amin, G. A. A. Aziz, O. Mohammed
{"title":"Adaptive Sliding-Mode H∞ Control of PMLSM Drive System via Interval Type-2 Petri Fuzzy-Neural-Network for a Two-Dimensional X-Y Table","authors":"F. El-Sousy, M. Amin, G. A. A. Aziz, O. Mohammed","doi":"10.1109/IAS44978.2020.9334793","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel adaptive sliding mode H∞ control (ASMHC) via self-evolving function-link interval type-2 Petri fuzzy-neural-network (SEFLIT2PFNN) for X-Y table motion control system driven through permanent-magnet linear synchronous motor (PMLSM) servo drives. ASMHC approach includes the sliding-mode controller (SMC), robust H∞ controller, and SEFLIT2PFNN estimator. In ASMHC design, the SMC technique is employed as it has rapid dynamic response with an invariance capability against uncertain dynamics, SEIT2FLFNN estimator is utilized for approximating the uncertain nonlinear functions of the X-Y table and the H∞ controller is developed for compensating the effects of the SEFLIT2PFNN approximation errors and external disturbances at a definite attenuation level. Furthermore, H∞ control theory and Lyapunov stability analysis are employed for online adaptive control laws, so that the stability of the ASMHC scheme can be assured. The validity of the proposed control system is verified by experimental analysis. The dynamic response of the X-Y table motion control system using ASMHC promises closed-loop stability and promises the H∞ tracking performance for the whole system. The experimental validation results endorsed that the proposed ASMHC has robust control response even the presence of system disturbances and parameter uncertainties.","PeriodicalId":115239,"journal":{"name":"2020 IEEE Industry Applications Society Annual Meeting","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Industry Applications Society Annual Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS44978.2020.9334793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a novel adaptive sliding mode H∞ control (ASMHC) via self-evolving function-link interval type-2 Petri fuzzy-neural-network (SEFLIT2PFNN) for X-Y table motion control system driven through permanent-magnet linear synchronous motor (PMLSM) servo drives. ASMHC approach includes the sliding-mode controller (SMC), robust H∞ controller, and SEFLIT2PFNN estimator. In ASMHC design, the SMC technique is employed as it has rapid dynamic response with an invariance capability against uncertain dynamics, SEIT2FLFNN estimator is utilized for approximating the uncertain nonlinear functions of the X-Y table and the H∞ controller is developed for compensating the effects of the SEFLIT2PFNN approximation errors and external disturbances at a definite attenuation level. Furthermore, H∞ control theory and Lyapunov stability analysis are employed for online adaptive control laws, so that the stability of the ASMHC scheme can be assured. The validity of the proposed control system is verified by experimental analysis. The dynamic response of the X-Y table motion control system using ASMHC promises closed-loop stability and promises the H∞ tracking performance for the whole system. The experimental validation results endorsed that the proposed ASMHC has robust control response even the presence of system disturbances and parameter uncertainties.
基于区间2型Petri模糊神经网络的二维X-Y表PMLSM驱动系统自适应滑模H∞控制
针对由永磁直线同步电机(PMLSM)伺服驱动的X-Y工作台运动控制系统,提出了一种基于自进化函数链区间2型Petri模糊神经网络(SEFLIT2PFNN)的自适应滑模H∞控制(ASMHC)方法。ASMHC方法包括滑模控制器(SMC)、鲁棒H∞控制器和SEFLIT2PFNN估计器。在ASMHC设计中,由于SMC技术具有快速的动态响应和对不确定动态的不稳定性,采用了SEIT2FLFNN估计器来逼近X-Y表的不确定非线性函数,并开发了H∞控制器来补偿SEFLIT2PFNN逼近误差和外部干扰在一定衰减水平上的影响。此外,将H∞控制理论和Lyapunov稳定性分析应用于在线自适应控制律,保证了ASMHC方案的稳定性。实验分析验证了该控制系统的有效性。采用ASMHC的X-Y工作台运动控制系统的动态响应保证了整个系统的闭环稳定性和H∞跟踪性能。实验验证结果表明,即使存在系统扰动和参数不确定性,所提出的ASMHC也具有鲁棒的控制响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信