Position estimation from relative distance measurements in multi-agents formations

G. Calafiore, L. Carlone, Mingzhu Wei
{"title":"Position estimation from relative distance measurements in multi-agents formations","authors":"G. Calafiore, L. Carlone, Mingzhu Wei","doi":"10.1109/MED.2010.5547601","DOIUrl":null,"url":null,"abstract":"The problem of reconstructing the geometric position of nodes in a networked formation from inter-nodal distance measurements is a complex computational task that involves the minimization of a non-convex and highly multi-modal cost criterion. In this paper, we examine three numerical techniques for attacking this problem, namely an iterative Least-Squares (LS) approach, a Trust-Region (TR) approach, and a Global Continuation (GC) technique based on iterative smoothing. The implementation details of the three methods are discussed in the paper, and extensive numerical simulations are performed in order to highlight the complementary properties of these methods in terms of required computational effort and ability to achieve global convergence.","PeriodicalId":149864,"journal":{"name":"18th Mediterranean Conference on Control and Automation, MED'10","volume":"185 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th Mediterranean Conference on Control and Automation, MED'10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2010.5547601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The problem of reconstructing the geometric position of nodes in a networked formation from inter-nodal distance measurements is a complex computational task that involves the minimization of a non-convex and highly multi-modal cost criterion. In this paper, we examine three numerical techniques for attacking this problem, namely an iterative Least-Squares (LS) approach, a Trust-Region (TR) approach, and a Global Continuation (GC) technique based on iterative smoothing. The implementation details of the three methods are discussed in the paper, and extensive numerical simulations are performed in order to highlight the complementary properties of these methods in terms of required computational effort and ability to achieve global convergence.
基于相对距离测量的多智能体编队位置估计
从节点间距离测量中重建网络中节点的几何位置问题是一项复杂的计算任务,涉及非凸和高度多模态代价准则的最小化。在本文中,我们研究了解决这一问题的三种数值技术,即迭代最小二乘(LS)方法,信任区域(TR)方法和基于迭代平滑的全局延拓(GC)技术。本文讨论了这三种方法的实现细节,并进行了大量的数值模拟,以突出这些方法在所需的计算量和实现全局收敛的能力方面的互补特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信