Distributed Detection with Empirically Observed Statistics

Haiyun He, Lin Zhou, V. Tan
{"title":"Distributed Detection with Empirically Observed Statistics","authors":"Haiyun He, Lin Zhou, V. Tan","doi":"10.1109/ITW44776.2019.8989062","DOIUrl":null,"url":null,"abstract":"We consider a binary distributed detection problem in which the distributions of the sensor observations are unknown and only empirically observed statistics are available to the fusion center. The source (test) sequences are transmitted through different channels to the fusion center, which also observes noisy versions of labelled training sequences generated independently from the two underlying distributions. The fusion center decides which distribution the source sequence is sampled from based on the observed statistics, i.e., the noisy training data. We derive the optimal type-II error exponent given that the type-I error decays exponentially fast. We further maximize the type-II error exponent over the proportions of channels for both source and training sequences and conclude that as the ratio of the lengths of training to test sequences tends to infinity, using only one channel is optimal. Finally, we relate our results to the distributed detection problem studied by Tsitsiklis.","PeriodicalId":214379,"journal":{"name":"2019 IEEE Information Theory Workshop (ITW)","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW44776.2019.8989062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a binary distributed detection problem in which the distributions of the sensor observations are unknown and only empirically observed statistics are available to the fusion center. The source (test) sequences are transmitted through different channels to the fusion center, which also observes noisy versions of labelled training sequences generated independently from the two underlying distributions. The fusion center decides which distribution the source sequence is sampled from based on the observed statistics, i.e., the noisy training data. We derive the optimal type-II error exponent given that the type-I error decays exponentially fast. We further maximize the type-II error exponent over the proportions of channels for both source and training sequences and conclude that as the ratio of the lengths of training to test sequences tends to infinity, using only one channel is optimal. Finally, we relate our results to the distributed detection problem studied by Tsitsiklis.
基于经验观察统计的分布式检测
我们考虑了一个二元分布检测问题,其中传感器观测值的分布是未知的,只有经验观测到的统计量可供融合中心使用。源(测试)序列通过不同的通道传输到融合中心,融合中心还观察独立于两个底层分布生成的标记训练序列的噪声版本。融合中心根据观察到的统计量,即有噪声的训练数据,决定源序列从哪个分布采样。在i型误差呈指数级快速衰减的条件下,导出了最优的ii型误差指数。我们进一步最大化源序列和训练序列的通道比例上的ii型误差指数,并得出结论,当训练序列与测试序列的长度之比趋于无穷大时,仅使用一个通道是最优的。最后,我们将我们的结果与Tsitsiklis研究的分布式检测问题联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信