Outlier Detection of the Power Transformer DGA Fault Data Based on Ensemble Model

Yanan Liu, Zhang Qian, Huaqiang Li, L. Zhong, Yaohong Zhao, Yihua Qian
{"title":"Outlier Detection of the Power Transformer DGA Fault Data Based on Ensemble Model","authors":"Yanan Liu, Zhang Qian, Huaqiang Li, L. Zhong, Yaohong Zhao, Yihua Qian","doi":"10.1109/ACFPE56003.2022.9952294","DOIUrl":null,"url":null,"abstract":"In this paper., a new outlier detection method is proposed for the validity of DGA data for online monitoring of power transformers. The method aims to evaluate the validity of the data remitted to the fault database and uses a weighted ensembling of three outlier detection algorithms with different principles in order to avoid the uncertainty of a single model to reject outliers. The experimental results show that the proposed method has better performance in handling outliers in DGA fault data.","PeriodicalId":198086,"journal":{"name":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","volume":"144 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asian Conference on Frontiers of Power and Energy (ACFPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACFPE56003.2022.9952294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper., a new outlier detection method is proposed for the validity of DGA data for online monitoring of power transformers. The method aims to evaluate the validity of the data remitted to the fault database and uses a weighted ensembling of three outlier detection algorithms with different principles in order to avoid the uncertainty of a single model to reject outliers. The experimental results show that the proposed method has better performance in handling outliers in DGA fault data.
基于集成模型的电力变压器DGA故障数据异常点检测
在本文中。为保证DGA数据的有效性,提出了一种新的异常点检测方法,用于电力变压器在线监测。该方法旨在评估发送到故障数据库的数据的有效性,并采用三种不同原理的离群点检测算法的加权集成,以避免单一模型的不确定性来拒绝离群点。实验结果表明,该方法对DGA故障数据中的异常点有较好的处理效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信