Nearly Tight Bounds on the Encoding Length of the Burrows-Wheeler Transform

Ankur Gupta, R. Grossi, J. Vitter
{"title":"Nearly Tight Bounds on the Encoding Length of the Burrows-Wheeler Transform","authors":"Ankur Gupta, R. Grossi, J. Vitter","doi":"10.1137/1.9781611972986.3","DOIUrl":null,"url":null,"abstract":"In this paper, we present a nearly tight analysis of the encoding length of the Burrows-Wheeler Transform (BWT) that is motivated by the text indexing setting. For a text T of n symbols drawn from an alphabet Σ, our encoding scheme achieves bounds in terms of the hth-order empirical entropy Hh of the text, and takes linear time for encoding and decoding. We also describe a lower bound on the encoding length of the BWT that constructs an infinite (non-trivial) class of texts that are among the hardest to compress using the BWT. We then show that our upper bound encoding length is nearly tight with this lower bound for the class of texts we described. \n \nIn designing our BWT encoding and its lower bound, we also address the t-subset problem; here, the goal is to store a subset of t items drawn from a universe [1..n] using just lg (nt)+O(1) bits of space. A number of solutions to this basic problem are known, however encoding or decoding usually requires either O(t) operations on large integers [Knu05, Rus05] or O(n) operations. We provide a novel approach to reduce the encoding/decoding time to just O(t) operations on small integers (of size O(lg n) bits), without increasing the space required.","PeriodicalId":340112,"journal":{"name":"Workshop on Analytic Algorithmics and Combinatorics","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Analytic Algorithmics and Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611972986.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present a nearly tight analysis of the encoding length of the Burrows-Wheeler Transform (BWT) that is motivated by the text indexing setting. For a text T of n symbols drawn from an alphabet Σ, our encoding scheme achieves bounds in terms of the hth-order empirical entropy Hh of the text, and takes linear time for encoding and decoding. We also describe a lower bound on the encoding length of the BWT that constructs an infinite (non-trivial) class of texts that are among the hardest to compress using the BWT. We then show that our upper bound encoding length is nearly tight with this lower bound for the class of texts we described. In designing our BWT encoding and its lower bound, we also address the t-subset problem; here, the goal is to store a subset of t items drawn from a universe [1..n] using just lg (nt)+O(1) bits of space. A number of solutions to this basic problem are known, however encoding or decoding usually requires either O(t) operations on large integers [Knu05, Rus05] or O(n) operations. We provide a novel approach to reduce the encoding/decoding time to just O(t) operations on small integers (of size O(lg n) bits), without increasing the space required.
Burrows-Wheeler变换编码长度的近紧界
在本文中,我们对文本索引设置驱动的Burrows-Wheeler变换(BWT)的编码长度进行了近乎严密的分析。对于从字母表Σ中提取的n个符号的文本T,我们的编码方案根据文本的h阶经验熵Hh实现了边界,并且编码和解码需要线性时间。我们还描述了BWT编码长度的下界,该下界构造了无限(非平凡的)文本类,这些文本是最难使用BWT压缩的。然后,我们证明了我们的编码长度上界与我们描述的文本的下界几乎是紧密的。在设计我们的BWT编码及其下界时,我们还解决了t子集问题;这里,目标是存储从宇宙[1..]中抽取的t项的子集。n]只使用lg (nt)+O(1)位空间。这个基本问题的许多解决方案是已知的,但是编码或解码通常需要对大整数进行O(t)操作[Knu05, Rus05]或O(n)操作。我们提供了一种新颖的方法,将编码/解码时间减少到对小整数(大小为O(lgn)位)的O(t)次操作,而不增加所需的空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信