Visual gesture recognition for real-time editing system

Byung-Woo Min, H. Yoon, Jung Soh, Young-Kyu Yang
{"title":"Visual gesture recognition for real-time editing system","authors":"Byung-Woo Min, H. Yoon, Jung Soh, Young-Kyu Yang","doi":"10.1109/MMCS.1999.778624","DOIUrl":null,"url":null,"abstract":"This research aims to recognize one-stroke pictorial gestures from visual images, and to develop a graphic/text editing system running in real time. The tasks are performed through three steps: moving-hand tracking and trajectory generation, key-gesture segmentation and gesture recognition by analyzing dynamic features. A gesture vocabulary consists of forty-eight gestures of three types: (1) six editing commands, (2) six graphic primitives, (3) alphanumeric characters-twenty-six alphabetic and ten numerical. Some dynamic features are obtained from spatio-temporal trajectories and quantized by the K-means algorithm. The quantized vectors were trained and tested using hidden Markov models (HMMs).","PeriodicalId":408680,"journal":{"name":"Proceedings IEEE International Conference on Multimedia Computing and Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings IEEE International Conference on Multimedia Computing and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMCS.1999.778624","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This research aims to recognize one-stroke pictorial gestures from visual images, and to develop a graphic/text editing system running in real time. The tasks are performed through three steps: moving-hand tracking and trajectory generation, key-gesture segmentation and gesture recognition by analyzing dynamic features. A gesture vocabulary consists of forty-eight gestures of three types: (1) six editing commands, (2) six graphic primitives, (3) alphanumeric characters-twenty-six alphabetic and ten numerical. Some dynamic features are obtained from spatio-temporal trajectories and quantized by the K-means algorithm. The quantized vectors were trained and tested using hidden Markov models (HMMs).
用于实时编辑系统的视觉手势识别
本研究旨在从视觉图像中识别一笔写意手势,并开发一个实时运行的图文编辑系统。该方法主要分为三个步骤:运动手部跟踪和轨迹生成、按键手势分割和动态特征识别。手势词汇由三种类型的48个手势组成:(1)6个编辑命令,(2)6个图形原语,(3)字母数字字符——26个字母字符和10个数字字符。从时空轨迹中获得一些动态特征,并通过K-means算法进行量化。量化向量使用隐马尔可夫模型(hmm)进行训练和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信