Parallel Bayesian Network Structure Learning for Genome-Scale Gene Networks

Sanchit Misra, Md. Vasimuddin, K. Pamnany, Sriram P. Chockalingam, Yong Dong, Min Xie, M. Aluru, S. Aluru
{"title":"Parallel Bayesian Network Structure Learning for Genome-Scale Gene Networks","authors":"Sanchit Misra, Md. Vasimuddin, K. Pamnany, Sriram P. Chockalingam, Yong Dong, Min Xie, M. Aluru, S. Aluru","doi":"10.1109/SC.2014.43","DOIUrl":null,"url":null,"abstract":"Learning Bayesian networks is NP-hard. Even with recent progress in heuristic and parallel algorithms, modeling capabilities still fall short of the scale of the problems encountered. In this paper, we present a massively parallel method for Bayesian network structure learning, and demonstrate its capability by constructing genome-scale gene networks of the model plant Arabidopsis thaliana from over 168.5 million gene expression values. We report strong scaling efficiency of 75% and demonstrate scaling to 1.57 million cores of the Tianhe-2 supercomputer. Our results constitute three and five orders of magnitude increase over previously published results in the scale of data analyzed and computations performed, respectively. We achieve this through algorithmic innovations, using efficient techniques to distribute work across all compute nodes, all available processors and coprocessors on each node, all available threads on each processor and coprocessor, and vectorization techniques to maximize single thread performance.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"195 S556","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Learning Bayesian networks is NP-hard. Even with recent progress in heuristic and parallel algorithms, modeling capabilities still fall short of the scale of the problems encountered. In this paper, we present a massively parallel method for Bayesian network structure learning, and demonstrate its capability by constructing genome-scale gene networks of the model plant Arabidopsis thaliana from over 168.5 million gene expression values. We report strong scaling efficiency of 75% and demonstrate scaling to 1.57 million cores of the Tianhe-2 supercomputer. Our results constitute three and five orders of magnitude increase over previously published results in the scale of data analyzed and computations performed, respectively. We achieve this through algorithmic innovations, using efficient techniques to distribute work across all compute nodes, all available processors and coprocessors on each node, all available threads on each processor and coprocessor, and vectorization techniques to maximize single thread performance.
基因组尺度基因网络的并行贝叶斯网络结构学习
学习贝叶斯网络是np困难的。即使最近在启发式和并行算法方面取得了进展,建模能力仍然无法满足所遇到问题的规模。在本文中,我们提出了一种大规模并行的贝叶斯网络结构学习方法,并通过从超过1.685亿个基因表达值中构建模式植物拟南芥的基因组尺度基因网络来证明其能力。我们报告了75%的强大扩展效率,并展示了天河二号超级计算机157万核的扩展。我们的结果分别在数据分析和计算的规模上比以前发表的结果增加了三个和五个数量级。我们通过算法创新来实现这一目标,使用高效的技术在所有计算节点上分配工作,每个节点上的所有可用处理器和协处理器,每个处理器和协处理器上的所有可用线程,以及矢量化技术来最大化单线程性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信