[Diffusion bonding of hydroxyapatite ceramics and biometals].

F Yamane
{"title":"[Diffusion bonding of hydroxyapatite ceramics and biometals].","authors":"F Yamane","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>To improve the mechanical characteristics of hydroxyapatite (HAP) ceramics, a metal-ceramic composite formed by a solid state direct diffusion bonding system was studied. The joining treatment was carried out of a high vacuum and high temperature, for the bioactive ceramics (HAP) and the following biometals; platinum, gold-platinum alloy, titanium and titanium alloys, zirconium, niobium and aluminium alloy. The effects of the variations of thermal expansion mismatch and the interactive reactions at the interface were investigated by fractographic observation (SEM), X-ray diffraction method and EPMA analysis. On some of these joining combinations, the bonding strength had the same bonding strength as the adhesive materials. The results of interface observations showed that the bonding strength is affected by the interface reactions and the diffusion phenomena.</p>","PeriodicalId":77622,"journal":{"name":"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1990-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shika zairyo, kikai = Journal of the Japanese Society for Dental Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the mechanical characteristics of hydroxyapatite (HAP) ceramics, a metal-ceramic composite formed by a solid state direct diffusion bonding system was studied. The joining treatment was carried out of a high vacuum and high temperature, for the bioactive ceramics (HAP) and the following biometals; platinum, gold-platinum alloy, titanium and titanium alloys, zirconium, niobium and aluminium alloy. The effects of the variations of thermal expansion mismatch and the interactive reactions at the interface were investigated by fractographic observation (SEM), X-ray diffraction method and EPMA analysis. On some of these joining combinations, the bonding strength had the same bonding strength as the adhesive materials. The results of interface observations showed that the bonding strength is affected by the interface reactions and the diffusion phenomena.

羟基磷灰石陶瓷与生物金属的扩散键合。
为了提高羟基磷灰石(HAP)陶瓷的力学性能,采用固态直接扩散键合法制备了金属-陶瓷复合材料。对生物活性陶瓷(HAP)和以下生物金属进行高真空高温连接处理;铂、金铂合金、钛及钛合金、锆、铌、铝合金。通过断口观察(SEM)、x射线衍射法和EPMA分析研究了热膨胀失配变化和界面相互作用反应的影响。在其中的一些连接组合中,结合强度与粘合材料的结合强度相同。界面观察结果表明,界面反应和扩散现象影响了键合强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信