Isotopy of the Dehn twist on K3 # K3 after a single stabilization

Jianfeng Lin
{"title":"Isotopy of the Dehn twist on K3 # K3 after a\nsingle stabilization","authors":"Jianfeng Lin","doi":"10.2140/gt.2023.27.1987","DOIUrl":null,"url":null,"abstract":"Kronheimer-Mrowka recently proved that the Dehn twist along a 3-sphere in the neck of $K3\\#K3$ is not smoothly isotopic to the identity. This provides a new example of self-diffeomorphisms on 4-manifolds that are isotopic to the identity in the topological category but not smoothly so. (The first such examples were given by Ruberman.) In this paper, we use the Pin(2)-equivariant Bauer-Furuta invariant to show that this Dehn twist is not smoothly isotopic to the identity even after a single stabilization (connected summing with the identity map on $S^{2}\\times S^{2}$). This gives the first example of exotic phenomena on simply connected smooth 4-manifolds that do not disappear after a single stabilization.","PeriodicalId":254292,"journal":{"name":"Geometry & Topology","volume":"152 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2023.27.1987","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Kronheimer-Mrowka recently proved that the Dehn twist along a 3-sphere in the neck of $K3\#K3$ is not smoothly isotopic to the identity. This provides a new example of self-diffeomorphisms on 4-manifolds that are isotopic to the identity in the topological category but not smoothly so. (The first such examples were given by Ruberman.) In this paper, we use the Pin(2)-equivariant Bauer-Furuta invariant to show that this Dehn twist is not smoothly isotopic to the identity even after a single stabilization (connected summing with the identity map on $S^{2}\times S^{2}$). This gives the first example of exotic phenomena on simply connected smooth 4-manifolds that do not disappear after a single stabilization.
一次稳定后K3 # K3上Dehn捻的同位素
Kronheimer-Mrowka最近证明了沿K3\#K3$颈部的3球的Dehn扭曲不是顺利地同位素到同一性。这提供了4流形上的自微分同态的一个新例子,它在拓扑范畴上与恒等是同位素的,但并不顺利。(鲁伯曼是第一个这样的例子。)在本文中,我们利用Pin(2)-等变Bauer-Furuta不变量证明了即使在一次稳定之后(与S^{2}$上的恒等映射连接求和),这个Dehn捻也不是平滑地同位素于恒等映射。这给出了单连通光滑4流形在单次稳定后不消失的奇异现象的第一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信