3D Commutation-Loop Design Methodology for a Silicon-Carbide Based 15 kW, 380:480 V Matrix Converter with PCB Aluminum Nitride Cooling Inlay

Victoria Baker, B. Fan, R. Burgos, V. Blasko, Warren Chen
{"title":"3D Commutation-Loop Design Methodology for a Silicon-Carbide Based 15 kW, 380:480 V Matrix Converter with PCB Aluminum Nitride Cooling Inlay","authors":"Victoria Baker, B. Fan, R. Burgos, V. Blasko, Warren Chen","doi":"10.1109/ECCE44975.2020.9236072","DOIUrl":null,"url":null,"abstract":"Wide-bandgap devices like silicon-carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs feature fast switching speed, low switching losses, and higher operating temperatures. However, with the high di/dt and dv/dt slew rates, even small stray inductances and capacitances can lead to greater overvoltages and ringing during switching transients. Therefore, commutation loop parasitics are critical for SiC and GaN implementations. This paper details the theoretical analysis, and finite element analysis (FEA) simulation comparisons of different 3D Printed Circuit Board (PCB) layout strategies developed for a 15 kW SiC three-phase matrix converter. A discussion and evaluation of device cooling methods to increase the power density of the converter is also included, where each method defines specific constraints on the PCB layout design. Specifically, the use of PCB thermal vias and embedded Aluminum Nitride (AlN) ceramic inserts is evaluated. The latter resulting in a total power loop inductance of 22.8 nH, including device parasitics, and a thermal resistance of 2.7 °C/W.","PeriodicalId":433712,"journal":{"name":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Energy Conversion Congress and Exposition (ECCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECCE44975.2020.9236072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Wide-bandgap devices like silicon-carbide (SiC) MOSFETs and gallium nitride (GaN) HEMTs feature fast switching speed, low switching losses, and higher operating temperatures. However, with the high di/dt and dv/dt slew rates, even small stray inductances and capacitances can lead to greater overvoltages and ringing during switching transients. Therefore, commutation loop parasitics are critical for SiC and GaN implementations. This paper details the theoretical analysis, and finite element analysis (FEA) simulation comparisons of different 3D Printed Circuit Board (PCB) layout strategies developed for a 15 kW SiC three-phase matrix converter. A discussion and evaluation of device cooling methods to increase the power density of the converter is also included, where each method defines specific constraints on the PCB layout design. Specifically, the use of PCB thermal vias and embedded Aluminum Nitride (AlN) ceramic inserts is evaluated. The latter resulting in a total power loop inductance of 22.8 nH, including device parasitics, and a thermal resistance of 2.7 °C/W.
基于碳化硅的15kw, 380: 480v矩阵变换器与PCB氮化铝冷却镶嵌体的3D换相环设计方法
像碳化硅(SiC) mosfet和氮化镓(GaN) hemt这样的宽带隙器件具有快速开关速度、低开关损耗和更高的工作温度。然而,由于高di/dt和dv/dt转换率,即使很小的杂散电感和电容也会在开关瞬态期间导致更大的过电压和振铃。因此,换相环寄生对SiC和GaN的实现至关重要。本文详细介绍了为15kw SiC三相矩阵变换器开发的不同3D印刷电路板(PCB)布局策略的理论分析和有限元分析(FEA)仿真比较。讨论和评估器件冷却方法,以增加转换器的功率密度也包括在内,其中每种方法定义了PCB布局设计的特定约束。具体来说,评估了PCB热通孔和嵌入式氮化铝(AlN)陶瓷插片的使用。后者导致总功率环路电感为22.8 nH,包括器件寄生,热阻为2.7°C/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信