Robust synthesis for linear parameter varying systems using integral quadratic constraints

Shu Wang, H. Pfifer, P. Seiler
{"title":"Robust synthesis for linear parameter varying systems using integral quadratic constraints","authors":"Shu Wang, H. Pfifer, P. Seiler","doi":"10.1109/CDC.2014.7040136","DOIUrl":null,"url":null,"abstract":"A robust synthesis algorithm is proposed for a class of uncertain linear parameter varying (LPV) systems. The uncertain system is described as an interconnection of a nominal (not-uncertain) LPV system and an uncertainty whose input/output behavior is described by an integral quadratic constraint (IQC). The proposed algorithm is a coordinate-wise ascent that is similar to the well-known DK iteration for μ-synthesis. In the first step, a nominal controller is designed for the LPV system without uncertainties. In the second step, the robustness of the designed controller is evaluated and a new scaled plant for the next synthesis step is created. The robust performance condition used in the analysis step is formulated as a dissipation inequality that incorporates the IQC and generalizes the Bounded Real Lemma like condition for performance of nominal LPV systems. Both steps can be formulated as a semidefinite program (SDP) and efficiently solved using available optimization software. The effectiveness of the proposed method is demonstrated on a simple numerical example.","PeriodicalId":202708,"journal":{"name":"53rd IEEE Conference on Decision and Control","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"53rd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2014.7040136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

A robust synthesis algorithm is proposed for a class of uncertain linear parameter varying (LPV) systems. The uncertain system is described as an interconnection of a nominal (not-uncertain) LPV system and an uncertainty whose input/output behavior is described by an integral quadratic constraint (IQC). The proposed algorithm is a coordinate-wise ascent that is similar to the well-known DK iteration for μ-synthesis. In the first step, a nominal controller is designed for the LPV system without uncertainties. In the second step, the robustness of the designed controller is evaluated and a new scaled plant for the next synthesis step is created. The robust performance condition used in the analysis step is formulated as a dissipation inequality that incorporates the IQC and generalizes the Bounded Real Lemma like condition for performance of nominal LPV systems. Both steps can be formulated as a semidefinite program (SDP) and efficiently solved using available optimization software. The effectiveness of the proposed method is demonstrated on a simple numerical example.
线性变参数系统的积分二次约束鲁棒综合
针对一类不确定线性变参数系统,提出了一种鲁棒综合算法。不确定系统被描述为标称(非不确定)LPV系统和不确定系统的互连,不确定系统的输入/输出行为由积分二次约束(IQC)描述。所提出的算法是一种坐标上升算法,类似于众所周知的μ-合成的DK迭代。第一步,对无不确定性LPV系统设计标称控制器。在第二步,评估所设计控制器的鲁棒性,并为下一个合成步骤创建一个新的缩放对象。分析步骤中使用的鲁棒性能条件被表示为包含IQC的耗散不等式,并推广了标称LPV系统性能的有界实引理条件。这两个步骤都可以表示为半定程序(SDP),并使用现有的优化软件有效地求解。通过一个简单的算例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信