Exploring the Similarity/Dissimilarity measures for unsupervised IDS

P. S. R. Murty, R. K. Kumar, M. Sailaja
{"title":"Exploring the Similarity/Dissimilarity measures for unsupervised IDS","authors":"P. S. R. Murty, R. K. Kumar, M. Sailaja","doi":"10.1109/SAPIENCE.2016.7684160","DOIUrl":null,"url":null,"abstract":"This paper investigates various Similarity/Dissimilarity measures for Intrusion Detection Problem. In this paper we implemented an offline Anomaly based IDS using agglomerative and partition based clustering algorithms with selected Similarity/Dissimilarity measures. In unsupervised learning labeling the clusters is an important task. This paper employed two cluster labeling algorithms, SNC labeling algorithm and “labeling clusters using class representative objects”. This work is evaluated using KDDCup 99 dataset.","PeriodicalId":340137,"journal":{"name":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Data Mining and Advanced Computing (SAPIENCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAPIENCE.2016.7684160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper investigates various Similarity/Dissimilarity measures for Intrusion Detection Problem. In this paper we implemented an offline Anomaly based IDS using agglomerative and partition based clustering algorithms with selected Similarity/Dissimilarity measures. In unsupervised learning labeling the clusters is an important task. This paper employed two cluster labeling algorithms, SNC labeling algorithm and “labeling clusters using class representative objects”. This work is evaluated using KDDCup 99 dataset.
探索无监督IDS的相似/不相似度量
本文研究了入侵检测问题中的各种相似/不相似度量方法。在本文中,我们使用基于聚类和基于分区的聚类算法和选择的相似/不相似度量实现了一个基于离线异常的IDS。在无监督学习中,标记聚类是一项重要的任务。本文采用了两种聚类标注算法,SNC标注算法和“类代表对象标注聚类”。这项工作是使用KDDCup 99数据集进行评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信