Solar generation prediction using the ARMA model in a laboratory-level micro-grid

Rui Huang, Tiana Huang, R. Gadh, Na Li
{"title":"Solar generation prediction using the ARMA model in a laboratory-level micro-grid","authors":"Rui Huang, Tiana Huang, R. Gadh, Na Li","doi":"10.1109/SmartGridComm.2012.6486039","DOIUrl":null,"url":null,"abstract":"The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration.","PeriodicalId":143915,"journal":{"name":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"181","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartGridComm.2012.6486039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 181

Abstract

The goal of this article is to investigate and research solar generation forecasting in a laboratory-level micro-grid, using the UCLA Smart Grid Energy Research Center (SMERC) as the test platform. The article presents an overview of the existing solar forecasting models and provides an evaluation of various solar forecasting providers. The auto-regressive moving average (ARMA) model and the persistence model are used to predict the future solar generation within the vicinity of UCLA. In the forecasting procedures, the historical solar radiation data originates from SolarAnywhere. System Advisor Model (SAM) is applied to obtain the historical solar generation data, with inputting the data from SolarAnywhere. In order to validate the solar forecasting models, simulations in the System Identification Toolbox, Matlab platform are performed. The forecasting results with error analysis indicate that the ARMA model excels at short and medium term solar forecasting, whereas the persistence model performs well only under very short duration.
实验室级微电网中ARMA模型的太阳能发电预测
本文的目的是利用加州大学洛杉矶分校智能电网能源研究中心(SMERC)作为测试平台,对实验室级微电网中的太阳能发电预测进行调查和研究。本文概述了现有的太阳预报模型,并对各种太阳预报提供商进行了评估。采用自回归移动平均(ARMA)模型和持续模型对加州大学洛杉矶分校附近的未来太阳能发电进行了预测。在预报过程中,历史太阳辐射数据来源于SolarAnywhere。系统顾问模型(System Advisor Model, SAM)用于获取历史太阳能发电数据,并输入来自SolarAnywhere的数据。为了验证太阳预报模型,在系统识别工具箱、Matlab平台上进行了仿真。误差分析结果表明,ARMA模式在中短期太阳活动预报中表现较好,而持续模式仅在极短持续时间内表现较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信