{"title":"A configurable-hardware document-similarity classifier to detect web attacks","authors":"C. Ulmer, M. Gokhale","doi":"10.1109/IPDPSW.2010.5470737","DOIUrl":null,"url":null,"abstract":"This paper describes our approach to adapting a text document similarity classifier based on the Term Frequency Inverse Document Frequency (TFIDF) metric [11] to reconfigurable hardware. The TFIDF classifier is used to detect web attacks in HTTP data. In our reconfigurable hardware approach, we design a streaming, real-time classifier by simplifying an existing sequential algorithm and manipulating the classifier's model to allow decision information to be represented compactly. We have developed a set of software tools to help automate the process of converting training data to synthesizable hardware and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex 5-LX implementation requires two orders of magnitude less memory than the original algorithm. At 166MB/s (80X the software) the hardware implementation is able to achieve Gigabit network throughput at the same accuracy as the original algorithm.","PeriodicalId":329280,"journal":{"name":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","volume":"758 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPSW.2010.5470737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper describes our approach to adapting a text document similarity classifier based on the Term Frequency Inverse Document Frequency (TFIDF) metric [11] to reconfigurable hardware. The TFIDF classifier is used to detect web attacks in HTTP data. In our reconfigurable hardware approach, we design a streaming, real-time classifier by simplifying an existing sequential algorithm and manipulating the classifier's model to allow decision information to be represented compactly. We have developed a set of software tools to help automate the process of converting training data to synthesizable hardware and to provide a means of trading off between accuracy and resource utilization. The Xilinx Virtex 5-LX implementation requires two orders of magnitude less memory than the original algorithm. At 166MB/s (80X the software) the hardware implementation is able to achieve Gigabit network throughput at the same accuracy as the original algorithm.