Pace my race: recommendations for marathon running

J. Berndsen, B. Smyth, A. Lawlor
{"title":"Pace my race: recommendations for marathon running","authors":"J. Berndsen, B. Smyth, A. Lawlor","doi":"10.1145/3298689.3346991","DOIUrl":null,"url":null,"abstract":"We propose marathon running as a novel domain for recommender systems and machine learning. Using high-resolution marathon performance data from multiple marathon races (n = 7931), we build in-race recommendations for runners. We show that we can outperform the existing techniques which are currently employed for in-race finish-time prediction, and we demonstrate how such predictions may be used to make real time recommendations to runners. The recommendations are made at critical points in the race to provide personalised guidance so the runner can adjust their race strategy. Through the association of model features and the expert domain knowledge of marathon runners we generate explainable, adaptable pacing recommendations which can guide runners to their best possible finish time and help them avoid the potentially catastrophic effects of hitting the wall.","PeriodicalId":215384,"journal":{"name":"Proceedings of the 13th ACM Conference on Recommender Systems","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3298689.3346991","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

We propose marathon running as a novel domain for recommender systems and machine learning. Using high-resolution marathon performance data from multiple marathon races (n = 7931), we build in-race recommendations for runners. We show that we can outperform the existing techniques which are currently employed for in-race finish-time prediction, and we demonstrate how such predictions may be used to make real time recommendations to runners. The recommendations are made at critical points in the race to provide personalised guidance so the runner can adjust their race strategy. Through the association of model features and the expert domain knowledge of marathon runners we generate explainable, adaptable pacing recommendations which can guide runners to their best possible finish time and help them avoid the potentially catastrophic effects of hitting the wall.
给我的比赛配速:马拉松跑步的建议
我们建议将马拉松赛跑作为推荐系统和机器学习的一个新领域。使用来自多场马拉松比赛(n = 7931)的高分辨率马拉松表现数据,我们为跑步者构建了比赛内推荐。我们展示了我们可以超越目前在比赛中完成时间预测中使用的现有技术,并且我们展示了如何使用这种预测来为跑步者提供实时推荐。这些建议是在比赛的关键时刻提出的,为跑步者提供个性化的指导,以便他们调整自己的比赛策略。通过将模型特征与马拉松运动员的专业领域知识相结合,我们生成了可解释的、适应性强的配速建议,这些建议可以指导跑步者尽可能达到最佳完成时间,并帮助他们避免撞墙的潜在灾难性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信