Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent.

Gloria Pietropolli, Federico Julian Camerota Verdù, L. Manzoni, M. Castelli
{"title":"Parametrizing GP Trees for Better Symbolic Regression Performance through Gradient Descent.","authors":"Gloria Pietropolli, Federico Julian Camerota Verdù, L. Manzoni, M. Castelli","doi":"10.1145/3583133.3590574","DOIUrl":null,"url":null,"abstract":"Symbolic regression is a common problem in genetic programming (GP), but the syntactic search carried out by the standard GP algorithm often struggles to tune the learned expressions. On the other hand, gradient-based optimizers can efficiently tune parametric functions by exploring the search space locally. While there is a large amount of research on the combination of evolutionary algorithms and local search (LS) strategies, few of these studies deal with GP. To get the best from both worlds, we propose embedding learnable parameters in GP programs and combining the standard GP evolutionary approach with a gradient-based refinement of the individuals employing the Adam optimizer. We devise two different algorithms that differ in how these parameters are shared in the expression operators and report experimental results performed on a set of standard real-life application datasets. Our findings show that the proposed gradient-based LS approach can be effectively combined with GP to outperform the original algorithm.","PeriodicalId":422029,"journal":{"name":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3583133.3590574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Symbolic regression is a common problem in genetic programming (GP), but the syntactic search carried out by the standard GP algorithm often struggles to tune the learned expressions. On the other hand, gradient-based optimizers can efficiently tune parametric functions by exploring the search space locally. While there is a large amount of research on the combination of evolutionary algorithms and local search (LS) strategies, few of these studies deal with GP. To get the best from both worlds, we propose embedding learnable parameters in GP programs and combining the standard GP evolutionary approach with a gradient-based refinement of the individuals employing the Adam optimizer. We devise two different algorithms that differ in how these parameters are shared in the expression operators and report experimental results performed on a set of standard real-life application datasets. Our findings show that the proposed gradient-based LS approach can be effectively combined with GP to outperform the original algorithm.
通过梯度下降参数化GP树以获得更好的符号回归性能。
符号回归是遗传规划中的一个常见问题,但标准遗传规划算法在进行语法搜索时往往难以对学习到的表达式进行调优。另一方面,基于梯度的优化器可以通过局部探索搜索空间来有效地调整参数函数。虽然将进化算法与局部搜索(LS)策略相结合进行了大量的研究,但很少有研究涉及到GP。为了从两者中获得最佳效果,我们提出在GP规划中嵌入可学习参数,并将标准GP进化方法与使用Adam优化器的基于梯度的个体改进相结合。我们设计了两种不同的算法,它们在表达式操作符中共享这些参数的方式不同,并报告了在一组标准的实际应用程序数据集上执行的实验结果。我们的研究结果表明,基于梯度的LS方法可以有效地与GP相结合,从而优于原算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信