Stochastic online sensor scheduler for remote state estimation

Junfeng Wu, Yilin Mo, Ling Shi
{"title":"Stochastic online sensor scheduler for remote state estimation","authors":"Junfeng Wu, Yilin Mo, Ling Shi","doi":"10.1109/CPSNA.2013.6614251","DOIUrl":null,"url":null,"abstract":"In this paper, a remote state estimation problem where a sensor measures the state of a linear discrete-time process in an infinite time horizon is considered. We aim to minimize the average estimation error subject to a limited sensor-estimator communication rate. We propose a stochastic online sensor schedule: whether or not the sensor sends data is based on its measurements and a stochastic holding time between the present and the most recent sensor-estimator communication instance. This decision process is formulated as a generalized geometric programming (GGP) optimization problem. It can be solved with a tractable computational complexity and provides a better performance compared with the optimal offline schedule. Numerical example is provided to illustrate main results.","PeriodicalId":212743,"journal":{"name":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 1st International Conference on Cyber-Physical Systems, Networks, and Applications (CPSNA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPSNA.2013.6614251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, a remote state estimation problem where a sensor measures the state of a linear discrete-time process in an infinite time horizon is considered. We aim to minimize the average estimation error subject to a limited sensor-estimator communication rate. We propose a stochastic online sensor schedule: whether or not the sensor sends data is based on its measurements and a stochastic holding time between the present and the most recent sensor-estimator communication instance. This decision process is formulated as a generalized geometric programming (GGP) optimization problem. It can be solved with a tractable computational complexity and provides a better performance compared with the optimal offline schedule. Numerical example is provided to illustrate main results.
用于远程状态估计的随机在线传感器调度
研究了传感器在无限时间范围内测量线性离散过程状态的远程状态估计问题。我们的目标是在有限的传感器-估计器通信速率下最小化平均估计误差。我们提出了一个随机在线传感器调度:传感器是否发送数据是基于它的测量值和当前和最近的传感器-估计器通信实例之间的随机保持时间。该决策过程被表述为一个广义几何规划(GGP)优化问题。与最优离线调度相比,该调度具有可处理的计算复杂度,并且具有更好的性能。给出了数值算例来说明主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信