Ear Recognition based on Local Texture Descriptors

Kershen Sivanarain, Serestina Viriri
{"title":"Ear Recognition based on Local Texture Descriptors","authors":"Kershen Sivanarain, Serestina Viriri","doi":"10.1109/IMITEC50163.2020.9334147","DOIUrl":null,"url":null,"abstract":"Automated personal identification using unique characteristics of the human ear is emerging as an appealing modality in forensic and biometric domains. This study investigates the use of local texture descriptors for ear recognition, and the effects of the fusions of these descriptors. The study presents an investigation of Local Binary Patterns (LBP) and provides extensions of various local descriptors, namely Local Ternary Patterns (LTP), Local Directional Pattern (LDP) and Directional Ternary Patterns (DTP) to ear recognition. A novel approach is proposed for the fusion of these descriptors, referred to as Fusions of Local Descriptors (FLD). Experiments were performed on the publicly available IIT Delhi databases (IITD-l and IITD-2), consisting of several subjects under varying conditions. The experiments show exceptional results, highly competitive with and in some cases beyond the state-of-the-art. Best recognition rates yielded from the FLD fusing DTP and multi-resolution LBP. This study achieved a recognition rate of 95.88% and 97.44% on IITD-l and IITD-2 respectively.","PeriodicalId":349926,"journal":{"name":"2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC)","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Multidisciplinary Information Technology and Engineering Conference (IMITEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMITEC50163.2020.9334147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Automated personal identification using unique characteristics of the human ear is emerging as an appealing modality in forensic and biometric domains. This study investigates the use of local texture descriptors for ear recognition, and the effects of the fusions of these descriptors. The study presents an investigation of Local Binary Patterns (LBP) and provides extensions of various local descriptors, namely Local Ternary Patterns (LTP), Local Directional Pattern (LDP) and Directional Ternary Patterns (DTP) to ear recognition. A novel approach is proposed for the fusion of these descriptors, referred to as Fusions of Local Descriptors (FLD). Experiments were performed on the publicly available IIT Delhi databases (IITD-l and IITD-2), consisting of several subjects under varying conditions. The experiments show exceptional results, highly competitive with and in some cases beyond the state-of-the-art. Best recognition rates yielded from the FLD fusing DTP and multi-resolution LBP. This study achieved a recognition rate of 95.88% and 97.44% on IITD-l and IITD-2 respectively.
基于局部纹理描述符的人耳识别
利用人耳的独特特征进行自动个人识别在法医和生物识别领域正成为一种吸引人的方式。本研究探讨了局部纹理描述符在耳朵识别中的应用,以及这些描述符融合后的效果。本研究提出了局部二元模式(LBP)的研究,并提供了各种局部描述符的扩展,即局部三元模式(LTP),局部定向模式(LDP)和定向三元模式(DTP)到耳朵识别。提出了一种新的描述符融合方法,称为局部描述符融合(FLD)。实验是在印度理工学院德里分校的公开数据库(iitd - 1和IITD-2)上进行的,由不同条件下的几个受试者组成。实验显示出卓越的结果,与最先进的技术高度竞争,在某些情况下甚至超过了最先进的技术。FLD融合DTP和多分辨率LBP得到了最好的识别率。本研究对iitd - 1和IITD-2的识别率分别为95.88%和97.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信