An Integrated Visual Analytics Framework for Spatiotemporal Data

Shaohua Wang, E. Zhong, Qiang Zhou, Xue Cui, Hao Lu, W. Yun, Zhongnan Hu, W. Cai, Liang Long
{"title":"An Integrated Visual Analytics Framework for Spatiotemporal Data","authors":"Shaohua Wang, E. Zhong, Qiang Zhou, Xue Cui, Hao Lu, W. Yun, Zhongnan Hu, W. Cai, Liang Long","doi":"10.1145/3284566.3284574","DOIUrl":null,"url":null,"abstract":"Visual analytics 1 for spatiotemporal data is an essential issue in shown the patterns of the spatial data mining results. To deal with challenges caused by dynamic spatiotemporal data require efficient visual analytics that visualizes real-time and dynamic spatial data. We proposed and implemented an integrated visual analytics framework. It integrated open source map library, visual library, and modern web development technology. It made use of Spark Streaming in real-time data processing while real-time mapping results on the DataFlowLayer. Visual analytics framework for dynamic objects is built based on high-performance processing and hardware mixed acceleration strategies. Benchmark experiments showed that it achieved excellent performance for visualizing spatiotemporal data.","PeriodicalId":280468,"journal":{"name":"Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities","volume":"515 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st ACM SIGSPATIAL Workshop on Advances on Resilient and Intelligent Cities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284566.3284574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual analytics 1 for spatiotemporal data is an essential issue in shown the patterns of the spatial data mining results. To deal with challenges caused by dynamic spatiotemporal data require efficient visual analytics that visualizes real-time and dynamic spatial data. We proposed and implemented an integrated visual analytics framework. It integrated open source map library, visual library, and modern web development technology. It made use of Spark Streaming in real-time data processing while real-time mapping results on the DataFlowLayer. Visual analytics framework for dynamic objects is built based on high-performance processing and hardware mixed acceleration strategies. Benchmark experiments showed that it achieved excellent performance for visualizing spatiotemporal data.
一个集成的时空数据可视化分析框架
时空数据的可视化分析1是显示空间数据挖掘结果模式的关键问题。为了应对动态时空数据带来的挑战,需要有效的可视化分析,将实时和动态的空间数据可视化。我们提出并实现了一个集成的可视化分析框架。它集成了开源地图库、可视化库和现代web开发技术。它利用Spark Streaming进行实时数据处理,同时在DataFlowLayer上进行实时映射。基于高性能处理和硬件混合加速策略,构建了面向动态对象的可视化分析框架。基准实验表明,该方法对时空数据的可视化具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信