Classification of QPSK Signals with Different Phase Noise Levels Using Deep Learning

Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Mofadal Alymani, Mohsen H. Alhazmi, Zikang Sheng, Yu-dong Yao
{"title":"Classification of QPSK Signals with Different Phase Noise Levels Using Deep Learning","authors":"Hatim Alhazmi, Alhussain Almarhabi, Abdullah Samarkandi, Mofadal Alymani, Mohsen H. Alhazmi, Zikang Sheng, Yu-dong Yao","doi":"10.1109/WOCC48579.2020.9114928","DOIUrl":null,"url":null,"abstract":"Spectrum awareness allows the understanding of the wireless systems environment and it gives engineers and designers better control in systems design and analysis. Phase noise is one of the characteristics of the channel distortion or device distortion, which causes transmission errors. In this paper, a deep learning network is utilized to study and identify different phase noise levels for quadrature phase shift keying (QPSK) signals. Our experiment results show that the deep learning neural network is capable of classifying a wide range of phase noise levels.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"2016 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Spectrum awareness allows the understanding of the wireless systems environment and it gives engineers and designers better control in systems design and analysis. Phase noise is one of the characteristics of the channel distortion or device distortion, which causes transmission errors. In this paper, a deep learning network is utilized to study and identify different phase noise levels for quadrature phase shift keying (QPSK) signals. Our experiment results show that the deep learning neural network is capable of classifying a wide range of phase noise levels.
基于深度学习的不同相位噪声电平QPSK信号分类
频谱感知允许了解无线系统环境,并为工程师和设计人员提供更好的系统设计和分析控制。相位噪声是信道失真或器件失真的特征之一,引起传输误差。本文利用深度学习网络来研究和识别正交相移键控(QPSK)信号的不同相位噪声电平。实验结果表明,深度学习神经网络能够对大范围的相位噪声进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信