A fault detection method for AUV based on multi-scale spatiotemporal feature fusion

Shaoxuan Xia, Xiaofeng Zhou, H. Shi, Shuai Li
{"title":"A fault detection method for AUV based on multi-scale spatiotemporal feature fusion","authors":"Shaoxuan Xia, Xiaofeng Zhou, H. Shi, Shuai Li","doi":"10.1117/12.2667304","DOIUrl":null,"url":null,"abstract":"Autonomous Underwater Vehicles (AUVs) are important equipment for ocean development and exploration. To ensure the task implementation of AUV, faults shall be detected in time. We propose a fault detection method based on Multiscale Spatiotemporal Feature fusion (MSF) for the time-varying characteristics and multiple correlation characteristics of AUV monitoring data. First, we apply a variety of sampling and data processing methods to generate monitoring windows with different scales along the time axis. Then, a composite feature extraction method is proposed to obtain temporal and spatial features simultaneously, and a feature pyramid of temporal and spatial information is formed. We use Bidirectional Long Short-Term Memory (BiLSTM) to obtain the time-series characteristics of a single monitoring variable, and Convolutional Neural Networks (CNN) to obtain the implicit spatial relationship characteristics among multiple monitoring variables. Next, we use an adaptive feature fusion method to solve the inconsistency in different feature scales, which can adaptively suppress the possible conflict information of different scale features. Finally, we use a fully connected network to detect the fault of the fused features. The fault detection experiment of Haizhe AUV shows the effectiveness and superiority of the proposed method.","PeriodicalId":345723,"journal":{"name":"Fifth International Conference on Computer Information Science and Artificial Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Computer Information Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2667304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Autonomous Underwater Vehicles (AUVs) are important equipment for ocean development and exploration. To ensure the task implementation of AUV, faults shall be detected in time. We propose a fault detection method based on Multiscale Spatiotemporal Feature fusion (MSF) for the time-varying characteristics and multiple correlation characteristics of AUV monitoring data. First, we apply a variety of sampling and data processing methods to generate monitoring windows with different scales along the time axis. Then, a composite feature extraction method is proposed to obtain temporal and spatial features simultaneously, and a feature pyramid of temporal and spatial information is formed. We use Bidirectional Long Short-Term Memory (BiLSTM) to obtain the time-series characteristics of a single monitoring variable, and Convolutional Neural Networks (CNN) to obtain the implicit spatial relationship characteristics among multiple monitoring variables. Next, we use an adaptive feature fusion method to solve the inconsistency in different feature scales, which can adaptively suppress the possible conflict information of different scale features. Finally, we use a fully connected network to detect the fault of the fused features. The fault detection experiment of Haizhe AUV shows the effectiveness and superiority of the proposed method.
基于多尺度时空特征融合的水下航行器故障检测方法
自主水下航行器(auv)是海洋开发和勘探的重要设备。为了保证AUV任务的执行,需要及时发现故障。针对水下航行器监测数据的时变特征和多重相关特征,提出了一种基于多尺度时空特征融合(MSF)的故障检测方法。首先,我们采用多种采样和数据处理方法,沿时间轴生成不同尺度的监测窗口。然后,提出了一种同时获取时空特征的复合特征提取方法,形成了时空信息的特征金字塔;我们使用双向长短期记忆(BiLSTM)来获取单个监测变量的时间序列特征,使用卷积神经网络(CNN)来获取多个监测变量之间的隐式空间关系特征。其次,采用自适应特征融合方法解决不同尺度特征间的不一致,能够自适应抑制不同尺度特征间可能存在的冲突信息。最后,利用全连通网络对融合特征进行故障检测。海浙水下机器人的故障检测实验表明了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信