YAGO-QA: Answering Questions by Structured Knowledge Queries

P. Adolphs, M. Theobald, Ulrich Schäfer, H. Uszkoreit, G. Weikum
{"title":"YAGO-QA: Answering Questions by Structured Knowledge Queries","authors":"P. Adolphs, M. Theobald, Ulrich Schäfer, H. Uszkoreit, G. Weikum","doi":"10.1109/ICSC.2011.30","DOIUrl":null,"url":null,"abstract":"We present a natural-language question-answering system that gives access to the accumulated knowledge of one of the largest community projects on the Web â€\" Wikipedia â€\" via an automatically acquired structured knowledge base. Key to building such a system is to establish mappings from natural language expressions to semantic representations. We propose to acquire these mappings by data-driven methods â€\" corpus harvesting and paraphrasing â€\" and present a preliminary empirical study that demonstrates the viability of our method.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"330 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present a natural-language question-answering system that gives access to the accumulated knowledge of one of the largest community projects on the Web â€" Wikipedia â€" via an automatically acquired structured knowledge base. Key to building such a system is to establish mappings from natural language expressions to semantic representations. We propose to acquire these mappings by data-driven methods â€" corpus harvesting and paraphrasing â€" and present a preliminary empirical study that demonstrates the viability of our method.
YAGO-QA:通过结构化知识查询回答问题
我们提出了一个自然语言问答系统,该系统可以通过自动获取的结构化知识库访问Web上最大的社区项目之一“维基百科”的积累知识。构建这样一个系统的关键是建立从自然语言表达式到语义表示的映射。我们建议通过数据驱动的方法——语料收集和释义——来获取这些映射,并提出了初步的实证研究来证明我们方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信