{"title":"Texture segmentation using multi-layered backpropagation","authors":"W. J. Ho, C. Osborne","doi":"10.1109/IJCNN.1991.170527","DOIUrl":null,"url":null,"abstract":"The authors trained the multi-layered backpropagation neural network to segment two paper samples with very similar paper formation characteristics. The paper samples were chosen deliberately in order to evaluate the multi-layered backpropagation performance in a difficult classification problem. The authors used the texture features obtained from the spatial gray-tone dependence cooccurrence matrices as inputs to the multi-layered backpropagation network. Results show good classification percentages when compared to a subjective evaluation method.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
The authors trained the multi-layered backpropagation neural network to segment two paper samples with very similar paper formation characteristics. The paper samples were chosen deliberately in order to evaluate the multi-layered backpropagation performance in a difficult classification problem. The authors used the texture features obtained from the spatial gray-tone dependence cooccurrence matrices as inputs to the multi-layered backpropagation network. Results show good classification percentages when compared to a subjective evaluation method.<>