Texture segmentation using multi-layered backpropagation

W. J. Ho, C. Osborne
{"title":"Texture segmentation using multi-layered backpropagation","authors":"W. J. Ho, C. Osborne","doi":"10.1109/IJCNN.1991.170527","DOIUrl":null,"url":null,"abstract":"The authors trained the multi-layered backpropagation neural network to segment two paper samples with very similar paper formation characteristics. The paper samples were chosen deliberately in order to evaluate the multi-layered backpropagation performance in a difficult classification problem. The authors used the texture features obtained from the spatial gray-tone dependence cooccurrence matrices as inputs to the multi-layered backpropagation network. Results show good classification percentages when compared to a subjective evaluation method.<<ETX>>","PeriodicalId":211135,"journal":{"name":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] 1991 IEEE International Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1991.170527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The authors trained the multi-layered backpropagation neural network to segment two paper samples with very similar paper formation characteristics. The paper samples were chosen deliberately in order to evaluate the multi-layered backpropagation performance in a difficult classification problem. The authors used the texture features obtained from the spatial gray-tone dependence cooccurrence matrices as inputs to the multi-layered backpropagation network. Results show good classification percentages when compared to a subjective evaluation method.<>
使用多层反向传播的纹理分割
作者训练多层反向传播神经网络来分割两个具有非常相似纸张形状特征的纸张样本。为了评估多层反向传播算法在一个困难分类问题中的性能,我们特意选择了论文样本。作者将空间灰度相关性共发生矩阵得到的纹理特征作为多层反向传播网络的输入。结果表明,与主观评价方法相比,分类率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信