Mining traffic accident features by evolutionary fuzzy rules

P. Krömer, Tibebe Beshah, D. Ejigu, V. Snás̃el, J. Platoš, A. Abraham
{"title":"Mining traffic accident features by evolutionary fuzzy rules","authors":"P. Krömer, Tibebe Beshah, D. Ejigu, V. Snás̃el, J. Platoš, A. Abraham","doi":"10.1109/CIVTS.2013.6612287","DOIUrl":null,"url":null,"abstract":"Traffic accidents represent a major problem threatening peoples lives, health, and property. Traffic behavior and driving in particular is a social and cultural phenomenon that exhibits significant differences across countries and regions. Therefore, traffic models developed in one country might not be suitable for other countries. Similarly, attributes of importance, dependencies, and patterns found in data describing traffic in one region might not be valid for other regions. All this makes traffic accident analysis and modelling a task suitable for data mining and machine learning approaches that develop models based on actual real-world data. In this study, we investigate a data set describing traffic accidents in Ethiopia and use a machine learning method based on artificial evolution and fuzzy systems to mine symbolic description of selected features of the data set.","PeriodicalId":252233,"journal":{"name":"2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVTS.2013.6612287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Traffic accidents represent a major problem threatening peoples lives, health, and property. Traffic behavior and driving in particular is a social and cultural phenomenon that exhibits significant differences across countries and regions. Therefore, traffic models developed in one country might not be suitable for other countries. Similarly, attributes of importance, dependencies, and patterns found in data describing traffic in one region might not be valid for other regions. All this makes traffic accident analysis and modelling a task suitable for data mining and machine learning approaches that develop models based on actual real-world data. In this study, we investigate a data set describing traffic accidents in Ethiopia and use a machine learning method based on artificial evolution and fuzzy systems to mine symbolic description of selected features of the data set.
基于演化模糊规则的矿山交通事故特征分析
交通事故是威胁人民生命、健康和财产安全的重大问题。交通行为和驾驶是一种社会和文化现象,在不同国家和地区表现出显著差异。因此,在一个国家开发的交通模式可能不适合其他国家。类似地,在描述一个区域的流量的数据中发现的重要性属性、依赖关系和模式可能对其他区域无效。所有这些都使得交通事故分析和建模成为一项适用于基于实际数据开发模型的数据挖掘和机器学习方法的任务。在本研究中,我们研究了描述埃塞俄比亚交通事故的数据集,并使用基于人工进化和模糊系统的机器学习方法来挖掘数据集选定特征的符号描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信