Tao Yang, J. Stahl, S. Schuckers, Fang Hua, Chris Boehnen, M. Karakaya
{"title":"Gaze angle estimate and correction in iris recognition","authors":"Tao Yang, J. Stahl, S. Schuckers, Fang Hua, Chris Boehnen, M. Karakaya","doi":"10.1109/CIBIM.2014.7015454","DOIUrl":null,"url":null,"abstract":"Conventional iris recognition using a full frontal iris image has reached a very high accuracy rate. In this paper, we focus on processing off-angle iris images. Previous research has shown that it is possible to correct off-angle iris images, but knowledge of the angle was needed. Very little work has focused on iris angle estimation which can be used for angle correction. In this paper, we describe a two-phase angle estimation based on the geometric features of the ellipse. Angle correction is accomplished by projective transformation. Evaluation of this angle estimation and correction method includes a 3D eyeball simulator, and performance test on the West Virginia University Off-Angle Dataset.","PeriodicalId":432938,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","volume":"162 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Biometrics and Identity Management (CIBIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBIM.2014.7015454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Conventional iris recognition using a full frontal iris image has reached a very high accuracy rate. In this paper, we focus on processing off-angle iris images. Previous research has shown that it is possible to correct off-angle iris images, but knowledge of the angle was needed. Very little work has focused on iris angle estimation which can be used for angle correction. In this paper, we describe a two-phase angle estimation based on the geometric features of the ellipse. Angle correction is accomplished by projective transformation. Evaluation of this angle estimation and correction method includes a 3D eyeball simulator, and performance test on the West Virginia University Off-Angle Dataset.