Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions

J. Shiraishi
{"title":"Affine screening operators, affine Laumon spaces and conjectures concerning non-stationary Ruijsenaars functions","authors":"J. Shiraishi","doi":"10.1093/integr/xyz010","DOIUrl":null,"url":null,"abstract":"\n Based on the screened vertex operators associated with the affine screening operators, we introduce the formal power series $f^{\\widehat{\\mathfrak gl}_N}(x,p|s,\\kappa|q,t)$ which we call the non-stationary Ruijsenaars function. We identify it with the generating function for the Euler characteristics of the affine Laumon spaces. When the parameters $s$ and $\\kappa$ are suitably chosen, the limit $t\\rightarrow q$ of $f^{\\widehat{\\mathfrak gl}_N}(x,p|s,\\kappa|q,q/t)$ gives us the dominant integrable characters of $\\widehat{\\mathfrak sl}_N$ multiplied by $1/(p^N;p^N)_\\infty$ (i.e. the $\\widehat{\\mathfrak gl}_1$ character). Several conjectures are presented for $f^{\\widehat{\\mathfrak gl}_N}(x,p|s,\\kappa|q,t)$, including the bispectral and the Poincaré dualities, and the evaluation formula. The main conjecture asserts that (i) one can normalize $f^{\\widehat{\\mathfrak gl}_N}(x,p|s,\\kappa|q,t)$ in such a way that the limit $\\kappa\\rightarrow 1$ exists, and (ii) the limit $f^{{\\rm st.}\\,\\widehat{\\mathfrak gl}_N}(x,p|s|q,t)$ gives us the eigenfunction of the elliptic Ruijsenaars operator. The non-stationary affine $q$-difference Toda operator ${\\mathcal T}^{\\widehat{\\mathfrak gl}_N}(\\kappa)$ is introduced, which comes as an outcome of the study of the Poincaré duality conjecture in the affine Toda limit $t\\rightarrow 0$. The main conjecture is examined also in the limiting cases of the affine $q$-difference Toda ($t\\rightarrow 0$), and the elliptic Calogero–Sutherland ($q,t\\rightarrow 1$) equations.","PeriodicalId":242196,"journal":{"name":"Journal of Integrable Systems","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrable Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/integr/xyz010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Based on the screened vertex operators associated with the affine screening operators, we introduce the formal power series $f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$ which we call the non-stationary Ruijsenaars function. We identify it with the generating function for the Euler characteristics of the affine Laumon spaces. When the parameters $s$ and $\kappa$ are suitably chosen, the limit $t\rightarrow q$ of $f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,q/t)$ gives us the dominant integrable characters of $\widehat{\mathfrak sl}_N$ multiplied by $1/(p^N;p^N)_\infty$ (i.e. the $\widehat{\mathfrak gl}_1$ character). Several conjectures are presented for $f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$, including the bispectral and the Poincaré dualities, and the evaluation formula. The main conjecture asserts that (i) one can normalize $f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$ in such a way that the limit $\kappa\rightarrow 1$ exists, and (ii) the limit $f^{{\rm st.}\,\widehat{\mathfrak gl}_N}(x,p|s|q,t)$ gives us the eigenfunction of the elliptic Ruijsenaars operator. The non-stationary affine $q$-difference Toda operator ${\mathcal T}^{\widehat{\mathfrak gl}_N}(\kappa)$ is introduced, which comes as an outcome of the study of the Poincaré duality conjecture in the affine Toda limit $t\rightarrow 0$. The main conjecture is examined also in the limiting cases of the affine $q$-difference Toda ($t\rightarrow 0$), and the elliptic Calogero–Sutherland ($q,t\rightarrow 1$) equations.
非平稳rujsenaars函数的仿射筛选算子、仿射Laumon空间和猜想
基于与仿射屏蔽算子相关联的屏蔽顶点算子,我们引入了形式幂级数$f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$,我们称之为非平稳rujsenaars函数。我们用仿射Laumon空间的欧拉特征的生成函数来识别它。当适当地选择参数$s$和$\kappa$时,$f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,q/t)$的极限$t\rightarrow q$给出$\widehat{\mathfrak sl}_N$乘以$1/(p^N;p^N)_\infty$的主要可积字符(即$\widehat{\mathfrak gl}_1$字符)。给出了$f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$的几个猜想,包括双谱和庞加莱对偶性,以及评价公式。主要猜想断言(i)人们可以规格化$f^{\widehat{\mathfrak gl}_N}(x,p|s,\kappa|q,t)$使极限$\kappa\rightarrow 1$存在,(ii)极限$f^{{\rm st.}\,\widehat{\mathfrak gl}_N}(x,p|s|q,t)$给出椭圆型rujsenaars算子的特征函数。引入非平稳仿射$q$ -差分Toda算子${\mathcal T}^{\widehat{\mathfrak gl}_N}(\kappa)$,它是仿射Toda极限下庞卡罗莱对偶猜想研究的结果$t\rightarrow 0$。在仿射$q$ -差分Toda ($t\rightarrow 0$)和椭圆Calogero-Sutherland ($q,t\rightarrow 1$)方程的极限情况下,也检验了主要猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信